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Abstract

We study small-scale market interactions in which buyers are allowed to credibly reveal par-
tial information about their types to the seller. Previous recent work has studied the special
case where there is one buyer and one good, showing that such communication can simultane-
ously improve social welfare and ex ante buyer utility. With multiple buyers, we find that the
buyer-optimal signalling schemes from the one-buyer case are actually harmful to buyer welfare.
Moreover, we prove several impossibility results showing that, with either multiple i.i.d. buyers
or multiple i.i.d. goods, maximizing buyer utility can be at odds with social efficiency, which
is a surprising contrast to the one-buyer, one-good case. Finally, we investigate the computa-
tional tractability of implementing desirable equilibrium outcomes. We find that, even with one
buyer and one good, optimizing buyer utility is generally NP-hard, but tractable in a practical
restricted setting.

1 Introduction

It is common knowledge that Bayesian-optimal mechanisms for revenue maximization lend them-
selves to inefficiency. A seller may rationally refuse to sell to buyers who are unwilling to pay a high
price, even if there is an acceptable lower price at which the seller could still make a substantial
profit. But what if a buyer is able to prove to the seller that they are unwilling to pay the high
price? Upon receiving such a proof, the only rational course of action is for the seller to offer a
lower price. As a result, both the buyer and the seller will see a welfare improvement.

However, the possibility of such communication will undoubtedly give rise to secondary market
effects. Will the seller infer that a buyer has a higher valuation simply because they do not choose
to disclose such a proof, and if so, should the seller raise their price even higher? And if there are
multiple buyers competing for a single item, how will the disclosures of one buyer affect the ultimate
welfare of another? To realistically discuss the overall welfare implications, it is thus necessary to
investigate not just specific one-shot interactions, but the equilibria of the game played between
the seller and the buyer(s).

This inquiry is inspired by the realm of online commerce, where the increasing accessibility and
quality of buyer data makes the personalized pricing of goods an ever more attractive prospect,
and has served as the motivation of previous work studying the impact of information signalling
on buyer welfare in auctions [3, 1]. Motivated by the prospect of a future in which consumers are
able to exert precise control over their online data (and a perhaps more immediate future in which
sellers implement personalized pricing), we aim to answer the question,

“Can consumers benefit from the ability to share their private data, and if so, how?”
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In a recent work, Ali, Lewis, and Vasserman [1] initiate the study of how such voluntary dis-
closure capabilities can improve welfare, considering a handful of special cases. In their model,
a prospective buyer is allowed to credibly disclose to the seller a set of possible types containing
their true type; the seller then sets prices based on this information. They report overwhelmingly
positive news for consumers. On the one hand, when there is one buyer, one seller, and one good,
they demonstrate that there always exists a disclosure strategy for the buyer such that

• no buyer has an incentive to deviate from the strategy after learning their type (technically,
the strategies are part of a sequentially-rational Bayes-Nash equilibrium),

• the good is always sold,

• the seller is weakly better off than they would be without disclosure, and

• every interim buyer type is weakly better off than they would be without disclosure.

For a parameterized family of canonical probability distributions over the buyer’s value for the good
(including the uniform distribution on [0, 1]), they show that it is possible to strictly increase ex
ante buyer utility as well. Furthermore, there is an intuitive characterization of the buyer-optimal
equilibrium, determined by the limit of a greedy algorithm that iteratively constructs better and
better equilibria by having all buyer types who are not sold the good declare to the seller that they
are of such a type. In the end we are left with a partitional equilibrium, in which there is some
partition P of the type space, and every buyer reveals the set in P to which their type belongs.

Ali, Lewis, and Vasserman also study a case of multiple sellers; in particular a setting in which
there are two sellers, and the lone buyer has strong but private preferences over from whom to
buy. Here they show that the buyer may leverage selective (seller-personalized) disclosure in order
to play them off of one another and again compel their personalized prices to increase the buyer’s
own expected utility.

However, the settings of these results differ markedly from most online commerce, and it is in
the direction of these differences which we depart.

In Section 3 we show that, with either multiple buyers or multiple goods, maximizing
buyer surplus may require the seller to sometimes not sell all of the goods (Theorem 3.1). Since
the model assumes the seller has no cost to sell the goods, this shows that social efficiency is not
always compatible with maximizing buyer welfare, which lies in stark contrast to the one-buyer,
one-good case. Our result holds even with the restrictions that buyer valuations are additive and
independent across goods, as well as independent across buyers.

Section 4 presents a case study of the setting with one good and two i.i.d., uniform [0, 1] buyers,
in which many of the phenomena from Section 3 can be better understood visually. We first
investigate whether the analogues of the optimal one-buyer equilibria still result in buyer welfare
improvements. Surprisingly, we find that the answer is negative for buyer-symmetric disclosure
strategies. Perhaps even more surprisingly, it is possible to improve the expected buyer surplus
(sum of both buyers’ utilities) by having only one buyer disclose information about their type
(though this harms the utility of the other buyer). As for the question of social efficiency, with a few
additional assumptions in the spirit of [1], we show an extreme impossibility result (Theorem 4.4),
again in contrast to the one-buyer case: in any equilibrium where the good is always allocated to
the highest bidder, both buyers must always receive utility zero.

Beyond these results, there is not much more that can be said about the existence of desirable
equilibria in general. The usefulness of voluntary disclosure depends heavily on the structure of the
common priors over buyer valuations. Thus, a natural followup question concerns the computation
of optimal disclosure strategies. We model this problem by approximating arbitrary priors by
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discrete probability distributions with finite support, which are encoded as part of the input. We
show that, while it is possible to efficiently compute the buyer-optimal equilibrium in the restricted
setting from [1] where disclosure messages must be “connected” (Theorem 5.1), the more general
problem is (weakly) NP-hard (Theorem 5.2), and is not even well-approximated by the algorithm
for the connected case (Proposition 5.3).

1.1 Related literature

This work falls within a larger body of literature on the implications of information signalling in
markets, and how strategic disclosure affects equilibria, as in the work of Gentzkow and Kamenica [4]
on Bayesian persauasion. The signals which we consider are the verifiable disclosures of [1], in which
buyers send public signals about their types from a set of possible signals which is demonstrably
truthful.

There is a parallel line of work aimed at improving buyer welfare via an intermediary that
observes buyer valuations and communicates a signal to the seller based on some prearranged
signalling scheme. Bergemann, Brooks, and Morris [3] address the case of one buyer and one
seller. They show that, if point D in Figure 1 represents the welfare of the buyer and seller in the
absence of any communication by the intermediary, then any combination of welfares in the shaded
triangle is attainable via randomized signalling schemes. Alijani, Banerjee, Munagala, and Wang
[2] generalize this to the setting with multiple buyers who share an intermediary, showing that the
line segment BE is unattainable, though it is possible to approximate the maximum possible buyer
welfare when the buyers’ types are independent and identically distributed.

Figure 1: Feasible buyer/seller welfare outcomes from Bergemann, Brooks, and Morris [3].

Similar to our setting is that of Shen, Tang, and Zeng [7], which generalizes [3] to the case
of multiple buyers. For them, the buyers each simultaneously signal according to pre-committed
signalling schemes to the seller, who then conducts a Myerson auction based on their updated
priors. They study the equilibria of this game and determine buyer-optimal equilibria for certain
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classes of buyer type distributions, but the buyer disclosures are neither deterministic nor verifiable.
Sher and Vohra [8] consider a setting where the disclosures are verifiable, and there is commitment
from both the buyer and the seller.

In terms of Figure 1, in our setting with verifiability but without commitment to a signalling
scheme, the main result of [1] is that there is some feasible point on line segment BE when there is
only one buyer and one good, which we show is false for either multiple buyers or multiple goods.
In fact, for multiple goods, we give an example where the only feasible point on segment AE is at
A, where the buyer receives no surplus at all (see Section 3.2).

2 Model

As in [1], we operate in the context of a verifiable disclosure game. We begin by defining the most
general, abstract form of the game, with multiple buyers and multiple goods, but still only one seller.
Suppose there are m goods, numbered 1, 2, . . . ,m. We are concerned only with additive valuations,
so we denote the type space of each buyer by Rm≥0, where, for any v = (v1, v2, . . . , vm) ∈ Rm≥0, each
vk denotes the value the buyer has for good k. There is a common prior over the buyers’ values,
in which the value any fixed buyer has for different goods may be correlated; but in all of the
multiple-buyer scenarios we consider in this paper, the values of different buyers are independent.
The disclosure game proceeds in two stages:

1. Each buyer simultaneously observes their value v ∈ Rm≥0 and publicly sends a message in the
form of a set M ⊆ Rm≥0 such that v ∈M .

2. The seller sells the good(s) to the buyer(s) so as to maximize their expected revenue, taking
into account the information conferred by M .

Note that the requirement that v ∈M is a key feature of this game: buyers cannot lie about their
types in the disclosure stage. We study the subgame-perfect pure-strategy Bayes-Nash equilibria
of this game, and evaluate them with respect to ex ante buyer surplus, defined as the expected sum
of all buyer utilities.

With one buyer and one good, step 2 simply involves the seller choosing a posted price and
the buyer accepting or rejecting. With one buyer and multiple goods, the seller posts a menu of
bundles of goods, each with an associated price, and the buyer may choose one of them. With one
good and multiple buyers, the seller runs a Myerson auction. We will introduce new notation to
describe these specialized settings as needed.

2.1 Special equilibria

An equilibrium is efficient if the good(s) are always sold to the buyer with the highest value. An
equilibrium is partitional if each buyer’s messaging strategy is induced by a partition P of Rm≥0,
where the buyer reveals to which set in P their value belongs. A connected partitional equilibrium
is one in which the interiors of the convex hulls of the messages in P are pairwise disjoint, in which
case we say the messages are connected and that P is a connected partition. As it is shown in [1],
to maximize expected buyer utility in the one-buyer one-good case, it is without loss of generality
to restrict attention to efficient, partitional equilibria.

Lemma 2.1 (Efficiency Lemma). Suppose there is one good and one buyer. Given any pure-
strategy equilibrium of the disclosure game, there exists a pure-strategy equilibrium that is efficient
and results in the same payoff for every buyer type.
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Lemma 2.2 (Partitional Lemma). Given any pure-strategy equilibrium of the disclosure game, there
exists a pure-strategy equilibrium that that is partitional and results in the same selling mechanism
for every buyer type.

The Efficiency Lemma is proved by having all buyer types that do not get the good reveal their
type to the seller. One can easily check that this does not change seller incentives when faced with
one of the other buyer types. The Partitional Lemma is proved by partitioning the buyer types by
the message that each type sent in the original equilibrium, thus conveying the same information
to the seller.1 While the partitional lemma continues to hold for multiple buyers and/or multiple
goods, we show in the next section that the Efficiency Lemma does not.

3 General impossibility results

In this section, we exhibit a series of counterexamples to prove the following theorem.

Theorem 3.1. In any setting with multiple goods or multiple buyers, there exist common priors
over buyer valuation functions such that:

• The buyer valuation functions are pairwise independent across different buyers.

• Every buyer’s valuation function is additive and independent across different goods.

• In any pure-strategy equilibrium of the disclosure game in which all goods are always sold,
buyer surplus is strictly lower than it would be in the absence of disclosure. (Additionally, in
the case of multiple goods, this buyer surplus must be zero.)

This implies that the Efficiency Lemma does not hold beyond the limited context of one good
and one buyer. In other words, social efficiency may be incompatible with maximizing expected
buyer welfare. We begin by discussing the computational approach used to verify the claims about
optimal mechanisms made in this section.

3.1 Computing the optimal mechanism over discrete distributions

Suppose the buyers have sent messages to the seller, and now the seller is deciding how to optimally
sell the goods. By the revelation principle, it is without loss of generality to consider selling
mechanisms in which each buyer is asked to exactly reveal the values they have for each good (but,
unlike in the initial disclosure, now they are allowed to lie, so the mechanism must be incentive
compatible). If there are only a finite number of types each buyer can have, then we can write the
seller’s optimization problem as a linear program, as follows.

Suppose their are ` buyers and m goods. For any j ∈ [`] := {1, 2, . . . , `}, suppose there are nj
possible types that buyer j can have. Let T denote the joint type space of all buyers,

T :=
∏
j∈[`]

[nj ],

where an element i ∈ T denotes a vector of types for each buyer, i = i1,i2, . . . ,i`. Analogously, for
any buyer j ∈ [`], let T−j denote the joint type space of all buyers other than j,

T−j :=
∏

j∈[`]\{j}

[nj ],

1The version of the Partitional Lemma proved in [1] is slightly different, since it is proved in the more complicated
setting where seller messages are required to be connected intervals. It only applies to efficient equilibria, and only
guarantees the same selling mechanism for almost every buyer type.
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where an element −i ∈ T−j denotes a vector of types for each buyer other than j. For any type
vector i ∈ T , suppose that pi denotes the probability that i is realized according to the common
prior. Finally, for any buyer j ∈ [`], type i ∈ [nj ], and good k ∈ [m], suppose that vi,j,k is the value
that type i of buyer j has for good k.

Given this information, a selling mechanism is fully specified the price ri,j that each buyer j
pays when types are revealed according to i, and the quantity qi,j,k of each good k that each buyer
j is allocated when types are revealed according to i. The optimal r and q are determined by the
following linear program, which maximizes expected revenue subject to individual rationality (IR)
and incentive compatibility (IC) constraints.

maximize

∑
i∈T

∑
j∈[`]

piri,j

subject to

ri,j ≥ 0 for all i ∈ T , j ∈ [`]
qi,j,k ≥ 0 for all i ∈ T , j ∈ [`], k ∈ [m]∑
j∈[`]

qi,j,k ≤ 1 for all i ∈ T , k ∈ [m]∑
k∈[m]

vi,j,kqi,j,k − ri,j ≥ 0 for all i ∈ T , j ∈ [`] (IR)∑
k∈[m]

v(i,−i),j,kq(i,−i),j,k − r(i,−i),j ≥
∑
−i∈T−j for all j ∈ [`], −i ∈ T−j ,

p(i,−i)

∑
k∈[m]

v(i′,−i),j,kq(i′,−i),j,k − r(i′,−i),j

 i, i′ ∈ [nj ] (IC)

Note that the optimal solution may involve non-integral values of qi,j,k, which can be interpreted
as giving good k to buyer j with probability qi,j,k when types are realized according to i. Also, a
more general version of this LP would allow for ex post violations of IR or IC; the more constrained
version above is equivalent in terms of the optimal value and resulting buyer surplus, and it produces
more reasonable-looking mechanisms.

We implemented an algorithm to compute the optimal mechanism with respect to any seller
belief distribution, using Gurobi [5] to solve the linear program, with the secondary optimization
objective of maximizing buyer surplus. For any prior distribution, we can enumerate over all tuples
of partitions of buyer types and compute expected buyer/seller utilities in the corresponding LP for
each possible vector of disclosure messages, then combine to compute the overall expected utilities
of the disclosure game. We ran thousands of trials with valuations and probabilities drawn inde-
pendently and uniformly at random from [0, 1]; the counterexamples in Section 3.2 were discovered
in this process, then subsequently simplified.

3.2 Counterexamples with multiple goods

Surprisingly, even for the simple case of one buyer, two goods, and two buyer types, it is possible
for the partition {{1, 2}} (in which there is no voluntary disclosure) to be the best partition (and
thus the best pure-strategy equilibrium) in terms of ex ante buyer utility, even though it results in
the buyer sometimes not getting one of the goods. The following is a simple example in which the
valuations of the two goods are correlated.

Type Probability Value for good 1 Value for good 2

1 1/2 3 4

2 1/2 4 9
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In the no-disclosure equilibrium induced by the partition {{1, 2}}, the unique optimal mechanism
is for the seller to post the following menu of choices.

Bundle Price

Only good 1 3

Both goods 1 and 2 12

Type 1 buyers purchase only good 1, and type 2 buyers purchase both goods 1 and 2. Notice
that type 2 buyers get utility 1 > 0. This is because the seller is unable to extract any more utility
from them, for otherwise they would opt to only buy good 1 (and if the seller raised the price on
good 1, they would completely exclude type 1 buyers, hurting revenue even more). There is some
inefficiency though, as good 2 is only sold with ex ante probability 1

2 , even though the buyer always
has positive utility for it. The only other partition to consider is {{1}, {2}}, in which the buyer
exactly reveals their type. While this always yields an efficient outcome, the seller will clearly be
able to extract all of the surplus, leaving the buyer with utility zero. Thus, we conclude that the
Efficiency Lemma no longer holds when their are 2 goods.

In fact, it turns out that this can happen even when the valuations for the two goods are
independent, as shown in the following example (which has been simplified as much as possible).

Type Probability Value for good 1 Value for good 2

1 0.15 · 0.4 56 38

2 0.15 · 0.6 56 69

3 0.85 · 0.4 91 38

4 0.85 · 0.6 91 69

In this case, in the unique optimal mechanism is the following.

Bundle Price

Good 2 for sure, and good 1 with probability 31/35 118.6

Both goods 1 and 2 129

A type 1 buyer will purchase nothing, a type 2 buyer will purchase the randomized bundle, and
types 3 and 4 purchase both goods. Note that the 31/35 is the maximum probability at which
types 3 and 4 weakly prefer buying both goods. Only type 4 gets nonzero utility. By exhaustively
checking each of the 14 alternative partitions of {1, 2, 3, 4}, we verified that, in any pure-strategy
equilibrium in which both goods always get sold, the ex ante buyer utility is strictly lower.

3.3 Counterexample with multiple buyers

Now suppose there is one good and two buyers, whose valuations for the good are independent
and identically distributed as follows.

Type Probability Value for good

1 1/4 1

2 1/4 2

3 1/2 3

In the absence of disclosure, an optimal mechanism for the seller (as verified computationally)
is as follows. If at least one buyer bids 3, randomly choose one such buyer and sell them the good
for 2.5. If no buyer bids 3, but at least one buyer bids 2, randomly choose one such buyer and sell
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them the good for 2. Otherwise, do not sell the good. The expected buyer surplus is 3
4 ·

1
2 = 3

8 , as
there is a 3

4 chance that there will be some buyer of type 3, in which case the buyer surplus will be
1
2 . However, the no-disclosure equilibrium is clearly not efficient, as the good is not sold 1

16 of the
time (when both buyers have type 1).

An intuitive idea to repair this equilibrium so that it is efficient is to use the partition {{1}, {2, 3}}.
By separating the lowest-value type from the other types, we can prevent the inefficient outcome,
since there is no longer any incentive for the seller to refuse to sell. In fact, in the one-buyer case,
this partition is precisely the one constructed in the proof of the Efficiency Lemma. In this case,
when the buyer sends the message {1}, the seller sells the good for a price of 1, and efficiency is
regained with no loss to buyer surplus; and when the buyer sends the message {2, 3}, the seller’s
incentives are the same as in the original equilibrium, so again, there is no loss to buyer surplus.

However, with two buyers, the seller’s incentives actually do change, and for this particular
example, they change in a way that harms buyer surplus. In the partitional equilibrium where both
buyers use the partition {{1}, {2, 3}} and both send the message {2, 3}, the optimal mechanism
is the same is in the no-disclosure equilibrium, except that the price the seller charges to a buyer
who bid 3 is 2.75 instead of 2.5, and hence the buyer surplus is 8

9 ·
1
4 = 2

9 <
3
8 . Even worse, when

one buyer sends the message {1} and the other buyer sends the message {2, 3}, having the outside
option of selling the good to the first buyer for 1 strictly incentivizes the seller to only sell to the
second buyer for a price of 3. This means that the buyer surplus is zero, and the good might be
sold to a buyer of value 1 over a buyer of value 2. So overall, using the partition {{1}, {2, 3}} for
both buyers results in a lower surplus of 3

4 ·
3
4 ·

2
9 = 1

8 , yet still does not resolve the inefficiency. In
fact, the inefficiency is even greater, as the seller’s welfare gains do not offset the buyers’ welfare
losses.

Having only one buyer use the partition {{1}, {2, 3}} and the other buyer use the no-disclosure
partition {{1, 2, 3}} suffers from similar problems. While the total social welfare is the same, the
buyer surplus is lower, and the equilibrium is still inefficient. By enumerating over all pairs of
partitions of the set {1, 2, 3}, we verified that, despite its inefficiency, the no-disclosure equilibrium
yields the strictly highest expected buyer surplus.

These negative secondary effects of disclosure are not mere anomalies specific to our discrete
counterexample. As we show in the next section, they manifest themselves even in the simple
setting where both buyers’ valuations are drawn uniformly from the interval [0, 1].

4 The case of two uniform [0, 1] buyers

For any a ≤ b, let U [a, b] denote the uniform distribution on [a, b]. In this section we consider the
special case where there are two buyers, A and B, with valuations vA and vB for a single good
drawn independently from U [0, 1].

By the Partitional Lemma (Theorem 2.2), we may restrict attention to equilibria of the disclo-
sure game for which A and B report messages PA and PB from PA and PB, which are partitions
of [0, 1]. In this section, we will only be concerned with the special case where PA and PB are con-
nected, i.e., each element is an interval. Again, as in the one-buyer setting, all pairs of partitions
PA,PB are supportable as equilibria in this game. If the seller holds the off-path belief that, upon
receiving from A any message M 6∈ PA, the valuation of A is vA := max{M} with probability 1,2

then A is guaranteed not to derive any utility from the resulting Myerson auction, since in order

2This maximum may not be well-defined in general, but it is well-defined for connected, partitional equilibria with
a U [0, 1] prior, since we may ensure all messages are closed on the top end. This can only improve buyer utilities,
and does not change seller incentives since U [0, 1] has no atomic points.
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to receive the good they must clear the Myerson reserve of vA ≥ vA. Facing a seller with these
off-path beliefs, A is therefore incentivized to report the unique PA ∈ PA for which vA ∈ PA, since
otherwise A is guaranteed to receive no utility. The same argument of course applies to B.

Since we are concerned with buyers with values drawn from U [0, 1] sending interval messages,
we will make extensive use of the following observation:

Lemma 4.1. A buyer with value v ∼ U [a, b] has virtual value φ(v) = 2v − b.

Proof. For this distribution, F (v) = v−a
b−a and f(v) = 1

b−a , and so φ(v) = v − 1−F (v)
f(v) = 2v − b.

4.1 The first step of Zeno’s partition

In [1], the optimal equilibrium for the one-buyer U [0, 1] distribution is induced by “Zeno’s partition,”

PZ := {(2−k−1, 2−k] | k ∈ Z≥0} ∪ {{0}}.

It is constructed through a sequence of steps from the no-disclosure equilibrium, where in each
step, all buyer types who are currently not sold the good are separated into a new element of the
partition. In the one-buyer case, each step is a Pareto improvement for all buyer types; let us
now consider the two-buyer case and see what happens when we implement the first step of Zeno’s
partition for both buyers simultaneously.

In the no-disclosure equilibrium (where each buyer always sends the message [0, 1]), the seller
runs a second-price auction with reserve price 1

2 . A simple calculation shows that the expected
buyer surplus is 1

6 . For a plot of the allocation as a function of (vA, vB) see Figure 2a.
Now consider what happens when buyers reveal whether their valuation is greater than or less

than 1
2 . There are 3 cases to consider. If both buyers have value less than 1

2 , then the seller will run
a second-price auction with reserve price 1

4 , so the result will be the same as in the no-disclosure
case, but with everything scaled down by a factor of 2. Thus, the expected buyer surplus will be
1
2 ·

1
6 = 1

12 . If both buyers have value ≥ 1
2 , it is not to hard to check that the seller still runs a

second-price auction with a reserve price of 1
2 (or equivalently, no reserve price). Thus we have the

same outcome as in the no-disclosure case for an expected buyer surplus of 1
6 .

So far, in the first two cases, everything is analogous to the 1-buyer case: if the low-value types
disclose that they have low value, we see an improvement in buyer welfare, whereas if there is no
disclosure, the seller incentives remain the same, so the buyers achieve the same welfare. However,
in the third case, where one buyer discloses they have a low value and the other does not, something
quite different happens: we see competition between the two buyers that ultimately reduces the
welfare of the high-value buyer.

Suppose buyer A reveals that vA ∈ [0, 12 ] and buyer B reveals that vB ∈ [12 , 1]. Applying
Theorem 4.1, the virtual values of the two buyers and their inverses are as follows:

φA(vA) = 2vA −
1

2
φB(vB) = 2vB − 1 φ−1A (x) =

x

2
+

1

4
φ−1B (x) =

x

2
+

1

2
.

Note that, for vB ∈ [12 , 1], φB(vB) ≥ 0, so the good is always sold under the Myerson auction.
However, for vB < vA + 1

4 , the good will be sold to buyer A since φB(vB) < φA(vA), even though
they have a lower valuation, just as in Section 3.3. Pictorially, the sale outcomes for this case are
as shown in the top-left quadrant of Figure 2b, where the small blue triangle represents the case
where the seller sells the good to A because vB < vA + 1

4 .
We can immediately deduce that, for small ε > 0, a buyer with value 1

2 + ε gets a lower interim
expected utility compared to the no-disclosure equilibrium. For in the no-disclosure equilibrium,
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(a) No disclosure: PA = PB = {[0, 1]}, yielding
an expected buyer surplus of E[U ] = 1
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(b) High/low disclosure: PA = PB =
{[0, 1/2], [1/2, 1]}, with E[U ] = 1

6 .

Figure 2: Allocations of the good under different partitional disclosure strategies for A and B.
Green denotes that A receives the good, blue denotes that B receives the good; red denotes no sale.
Expected buyer surplus E[U ] is given for each case.

they are sold the good with probability roughly 1
2 , and when they do win, they gain an expected

utility of roughly ε. However, in this new equilibrium, they are only sold the good with probability
roughly 1

4 , yet still only gain an expected utility of roughly ε when they win. Thus, in contrast to
the 1-buyer case, the new equilibrium is not a Pareto improvement across buyer types.

In fact, it turns out that it gives exactly the same ex ante utility for the buyers. To compute
the expected buyer surplus in the case where vA ∈ [0, 12 ] and vB ∈ [12 , 1], we break our computation
up into 3 disjoint sub-cases:

• A has value less than 1/4 so B wins with utility vB − φ−1B (0).

• A has value greater than 1/4, but φB(vB) ≥ φA(vA), so B still wins with utility vB −
φ−1B (φA(vA)).

• φB(vB) < φA(vA), so A wins with utility vA − φ−1A (φB(vB)).

We compute the expected buyer surplus by computing the corresponding 3 integrals with Mathe-
matica. The expected buyer surplus from the case where vA ∈ [0, 12 ] and vB ∈ [12 , 1] is

E[U ] =

∫ 1/4

0

∫ 1

1/2
(vB − φ−1B (0)) dvBdvA

+

∫ 1/2

1/4

∫ 1

vA+1/4
(vB − φ−1B (φA(vA))) dvBdvA

+

∫ 1/2

1/4

∫ vA+1/4

1/2
(vA − φ−1A (φB(vB))) dvBdvA =

5

96
.
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The case where vB ∈ [0, 12 ] and vA ∈ [12 , 1] is symmetric, so the expected buyer surplus coming this
case is also 5

96 .
Adding up the expected buyer surplus in each of the four cases, we have that the overall expected

buyer surplus is
1

4
· 1

12
+

1

4
· 1

6
+ 2 · 5

96
=

1

48
+

2

48
+

5

48
=

8

48
=

1

6
.

Thus, we have the same expected buyer surplus as in the no-disclosure equilibrium. All we have
accomplished is a redistribution of welfare from higher types to lower types, and we have introduced
new inefficiencies.

4.2 The search for better equilibria

In an effort to better understand the equilibria of this disclosure game when vA, vB ∼ U [0, 1],
we conducted a computer search over the space of partitional equilibria PA, PB which partition
[0, 1] into (a reasonable number of) intervals. We write partitions with overlapping endpoints for
convenience; this has no bearing on the computations.

We implemented the search by identifying an efficient means for computing the expected payoff
for buyer A under the Myerson auction, when the messages PA and PB have informed the seller
that vA ∈ [a, b] and vB ∈ [c, d] for arbitrary intervals [a, b], [c, d] ⊆ [0, 1]. This amounts to an
automation of the calculations described in Section 4.1.

This proceeded starts from the observation that, for given vB, the expectation of the payment
pA charged to A is

EvA∼U [a,b][pA|vB] = EvA [pA] = EvA [x(vA, vB) · φA(vA))],

and so the expected payoff uA of A over vA ∼ U [a, b] and vB ∼ U [c, d] is

EvB∼U [c,d]EvA∼U [a,b][uA] = EvB∼U [c,d]EvA∼U [a,b][x(vA, vB) · (vA − φA(vA))].

Applying Theorem 4.1 to vA ∼ U [a, b] and simplifying then lets us write the expected payoff of
buyer A as

EvB∼U [c,d]EvA∼U [a,b][uA] =
1

(b− a)(d− c)

∫
R
b− vA dvA dvB,

where R is the region of (vA, vB) given by the inequalities

a ≤ vA ≤ b, c ≤ vB ≤ d, vA ≥ b/2, vA ≥ vB +
b− d

2
.

Finally, the buyer surplus is just U = uA + uB, so for a given region it is simply

EvB∼U [c,d]EvA∼U [a,b][U ] = EvB∼U [c,d]EvA∼U [a,b][uA] + EvB∼U [c,d]EvA∼U [a,b][uB].

Once the boundaries of R are determined, this integral can be computed symbolically. Therefore
computing the expected buyer surplus for a given pair of partitions PA, PB simply entails evaluating
the above expression for each pair of possible intervals (PA, PB).

Using this approach, our search over pairs of partitions into intervals (with representative allo-
cations shown in Figure 3) strongly suggests the following conjecture:

Conjecture 4.2. For vA, vB ∼ U [0, 1] the partitional equilibrium given by PA = {[0, 12 ], [12 , 1]} and
PB = {[0, 1]} maximizes expected buyer welfare for the class of partitional equilibria.
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(a) Coarse asymmetric disclosure: PA =
{[0, 12 ], [ 12 , 1]}, and PB = {[0, 1]}, and E[U ] =
11
64 >

1
6 .

0 1
4

1
2

3
4

1
0

1
4

1
2

3
4

1

vA

vB

(b) Maximally asymmetric disclosure: PA =
{{x} : x ∈ [0, 1]} and PB = {[0, 1]}, yielding
E[U ] = 1

24 .
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(c) A and B disclose according to PA = PB =
{[0, 13 ], [ 13 ,

2
3 ], [ 23 , 1]}, E[U ] = 1

6 .
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4
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4

1
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4

1
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(d) A and B disclose according to Zeno’s parti-
tion PZ . Here E[U ] = 23

147 <
1
6 .

Figure 3: Allocations of the good in different partitional equilibria. As in Figure 2, blue denotes
that A receives the good, green denotes that B receives the good; in this case unshaded denotes no
sale. Expected buyer utility E[U ] is given for each case.
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This disclosure profile (with allocations shown in Figure 3a) is notable in that it is asymmetric,
and in that it appears to strictly outperform all symmetric profiles in terms of expected buyer
surplus. But most surprisingly, the buyer who discloses (in this case, buyer A) has increased
expected utility, while the buyer who does not disclose suffers a strict decrease in expected utility
as compared to the symmetric no-disclosure equilibrium (Figure 2a); A receives expected utility
13
128 ≈ 0.102, while B receives 9

128 ≈ 0.070. The total expected surplus is 11
64 >

1
6 .

At the same time, in this asymmetric regime there is a tradeoff between disclosure detail and
likelihood of receiving the good on the one hand, and expected surplus on the other. But as
A discloses more information and B does not disclose, A’s expected utility and relative surplus
decreases. In the limit, where A discloses vA exactly and B discloses nothing, the allocation is
shown in Figure 3b. Here E[UA] = 0, while E[UB] = 1/24.

Experimental evidence also suggests that:

Conjecture 4.3. For vA, vB ∼ U [0, 1] nondisclosure maximizes expected buyer welfare for the class
of all symmetric message sets which are interval partitions.

This no-disclosure equilibrium yields an expected buyer surplus of 1
6 , the same as the equilibrium

analyzed in Section 4.1. In fact, this has the same expected buyer surplus as the symmetric profile
shown in Figure 3c, and indeed it appears that all symmetric buyer disclosure profiles with a
high/low threshold t ∈ [0, 12 ] realize an expected buyer welfare of 1

6 .
By contrast, the equilibrium with symmetric disclosure given by the Zeno partition (Figure 3d)

confers expected buyer utility 23
147 <

1
6 .

4.3 Efficiency versus buyer welfare

If both buyers fully disclose their types, then the seller will sell to the buyer with a higher value at
that value, so we will have a socially efficient outcome, but neither buyer will receive any utility. On
the other hand, in all of the partial disclosure equilibria considered thus far, including no-disclosure,
some buyer gets nonzero utility, but the outcome is not guaranteed to be efficient (the good may
be sold to the buyer with a lower value, or not sold at all). A natural question is whether it is
possible to simultaneously achieve efficiency and nonzero buyer surplus. If we restrict attention to
connected partitional equilibria, the answer is negative.

Theorem 4.4. For vA, vB ∼ U [0, 1], there are no partitions PA,PB of [0, 1] into intervals inducing
an efficient equilibrium that confers nonzero expected buyer surplus.

Proof. We assume that the equilibrium induced by PA and PB confers nonzero buyer surplus,
and show that it must be inefficient for some vA, vB ∈ [0, 1]. The only property we actually need
to assume is that there exists some interval PA ∈ PA of measure greater than zero. This follows
without loss of generality, for if all intervals in both partitions have measure zero, i.e., are singletons,
then both buyers always exactly disclose their values, and hence get zero utility. Let 0 ≤ a < b ≤ 1
be such that the closure of PA is PA = [a, b]. Let

x :=
max{0, 2a− b}+ a

2
.

Note that x is the average of a and some point weakly less than a, so x ≤ a (and x = 0 precisely
when a = 0; otherwise x is in the open interval (0, a)). Let PB be the unique element of PB
containing x, and let 0 ≤ c ≤ d ≤ 1 be such that PB = [c, d]. There are five cases to consider.
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Case 1: x = 0. In this case, it must be that a = c = 0. Let vA := b
4 ∈ PA and vB := 0. After

disclosing that their type is in [a, b], by Theorem 4.1, the virtual value of buyer A is

φA = 2vA − b = − b
2
< 0,

so they will not get the good. This is inefficient since vA > vB = 0.
Case 2: x > 0 and d ≤ a. For small ε > 0, let vA := a + ε ∈ PA and vB := x+d

2 ∈ PB. Then
by Theorem 4.1 the virtual value of buyer A is

φA = 2vA − b = 2a− b+ 2ε

and the virtual value of buyer B is

φB = 2vB − d = x ≥ 3a− b
2

>
4a− 2b

2
= 2a− b = φA − 2ε.

Therefore, for sufficiently small ε, buyer B will get the good, which is inefficient since

vB =
x+ d

2
≤ x+ a

2
≤ a+ a

2
= a = vA − ε < vA.

Case 3: a < d < b. For small ε ≥ 0, let vA := d+ b−d
4 ∈ PA and vB := d− ε ∈ PB. (Note that

the ε is needed to ensure we have vB ∈ PB. Choosing ε > 0 is necessary if d /∈ PB; choosing ε = 0
is necessary if PB = {c} = {d}.) Then the virtual value of buyer A is

φA = 2vA − b =
3d− b

2

and the virtual value of buyer B is

φB = 2vB − d = d− 2ε =
2d

2
− 2ε >

3d− b
2
− 2ε = φA − 2ε.

Therefore, for sufficiently small ε, buyer B will get the good, which is inefficient since

vB = d− ε < d+
b− d

4
= vA.

Case 4: d > b. Observe that c ≤ x ≤ a < b. Thus, we have c < b < d, so this is the same as
Case 3, with the two roles of the two buyers reversed.

Case 5: x > 0 and d = b. Let x′ be any point in the open interval (x, a). Let P ′A be the

unique element of PA containing x′, and let 0 ≤ a′ ≤ b′ ≤ a be such that P ′A = [a′, b′]. Observe
that c ≤ x < x′ ≤ b′ ≤ a < b = d. Since c < b′ < d, we are again in Case 3, with the roles of the
two buyers reversed, and substituting P ′A for PA.

5 Complexity

In this section, we study the complexity of finding a buyer-optimal pure-strategy equilibrium over
a discrete distribution. In this setting, a buyer will have possible types N = {1, . . . , n}, each with
value v1 < . . . < vn and occurring with probability p1, . . . , pn respectively.

First, we analyze the restricted setting introduced by [1], in which buyer messages must be
connected, and thus the search problem is restricted to connected partitions. Note that in Example
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1 of [1], they show that their greedy algorithm is unable to compute the buyer-optimal disclosure
strategy in this setting. Using dynamic programming, we give a polynomial time algorithm to solve
this problem.

Next, we ask whether the buyer could do even better if they were allowed to report from a
broader class of messages. Specifically, we turn our attention to a more general setting in which
a buyer may report any arbitrary subset of their values {v1, . . . , vn} (or, equivalently, an arbitrary
subset of N). Here, things are not quite as easy. As it turns out, it is weakly NP-hard to compute
the buyer’s optimal strategy. Further, the optimal connected strategy does not even provide a
constant factor approximation to the optimal buyer surplus.

5.1 Connected partitions

Algorithm 1: Optimizes buyer welfare over connected partitions.

Input: Values v1 < · · · < vn and probabilities p1, . . . , pn
Output: A connected partition inducing an equilibrium with optimal ex ante buyer utility

1 Initialize array Q[0 . . . n];
2 Q[0].utility← 0;
3 Q[0].partition← ∅;
4 for i← 1 . . . n do
5 j∗ = argmaxj∈{0,...,i−1}{Q[j].utility + buyerUtility({j + 1, . . . , i})};
6 Q[i].partition = Q[j∗].partition ∪ {{j + 1, . . . , i}};
7 Q[i].utility = Q[j∗].utility + buyerUtility({j + 1, . . . , i});
8 end
9 return Q[n].partition;

Let us first consider the case of connected messages. By the Partitional Lemma, it suffices to
restrict attention to equilibria induced by some partition P of the set of buyer types N = {1, . . . , n}.
We show the following.

Theorem 5.1. Algorithm 1 computes a connected partition that induces an equilibrium which
maximizes ex ante buyer utility in polynomial time.

Proof. First we will prove the correctness of Algorithm 1. It uses a dynamic programming approach
with array Q. Each Q[i] will store the best partition of {1, . . . , i} as well as the expected buyer
utility when using this partition, scaled down by

∑i
j=1 pi. Note that when we are considering the

next element i, conditioned on it being in some partition element {j + 1, . . . , i}, the remaining
elements of the partition will be the optimal partition of {1, . . . , j}. Hence, by choosing the best
possible j, that will allow us to find the optimal partition for Q[i]. The buyerUitility function,
given a possible message of the buyer, gives the highest utility the buyer can receive when the seller
best responds to this message.

To show the runtime is polynomial, note that the initialization can be done in O(n) time. The
for loop is runs for n iterations. In each iteration, note that buyerUitility can be computed by
checking each seller price in {vj , . . . , vi}, of which there are at most n. For each of these, we must
check the probability of sale and expected buyer utility. This can be done in time linear in n by
iterating through the values in order, and keeping track of the total probability the buyer has value
above this value. In total, this loop takes O(n3) time.
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5.2 Arbitrary partitions

While message connectivity might reflect realistic practical constraints on the set of feasible mes-
sages, it is nevertheless interesting to consider settings where this constraint is not present. Unfortu-
nately, it turns out that, in the general case, computing a pure-strategy equilibrium that maximizes
ex ante buyer utility is NP-hard. More formally, we consider the following decision problem.

BUYER-OPT: Given a sequence of probabilities p1,p2, . . . ,pn (where
∑

i∈[n] pi = 1), corre-
sponding distinct positive valuations v1,v2, . . . ,vn, and a positive number U , determine whether
there exists a pure-strategy equilibrium with expected buyer utility U in the disclosure game with
one buyer, one seller, and one good, where the buyer has value vi for the good with probability pi.

Theorem 5.2. BUYER-OPT is weakly NP-complete.

We show BUYER-OPT is NP-hard by reducing from the following problem.

PARTITION: Given a finite sequence of positive integers s1,s2, . . . ,sm, adding up to some
even positive integer S, determine whether there exists I ⊆ [m] such that∑

i∈I
si =

S

2
.

Figure 4: The reduction from PARTITION to BUYER-OPT.

The main idea is to behind the reduction is that there will be one low-value type with high
probability and many high value types with low probability, as shown in Figure 4. The zigzagging
red line shows the probability of sale given a posted price according to the instance defined by the
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reduction. Ideally, to maximize buyer welfare, we would like to pool some of the high-value types
together with the low-value type, so that all types in the pool send the same message, and the seller
will set their price equal to the value of the low-value type, giving the high-value types positive
utility. The seller maximizes revenue by choosing the largest rectangle under the curve, ignoring
the types that are not in this pool. Thus, in order to incentivize the seller to choose the low price,
we need the vertical green rectangle in Figure 4 to be larger than the horizontal blue rectangle,
which is only possible if we pool at most half of the high-value types (weighted by probability mass)
with the low-value type. Optimally, we would like to get exactly half of the probability mass, which
requires solving PARTITION. See Appendix A for the full proof.

We now ask whether our polynomial time algorithm from Section 5.1 could be used to at least
approximate optimal ex ante buyer utility in this more general setting. Unfortunately, we show
here that this is not the case.

Proposition 5.3. No equilibrium for the general setting induced by a connected partition can have
ex ante buyer utility that approximates the optimal within a constant factor.

See Appendix B for the proof.

6 Conclusion

Can buyers reveal for a better deal, and if so, how? In the restricted setting with one buyer and one
good, Ali, Lewis, and Vasserman [1] answer the former question with an emphatic “Yes!” Utility
improving disclosure schemes are generally feasible, always socially efficient, and in the presence of
connectivity constraints on the disclosure technology, can easily be exactly optimized for the buyer.
Unfortunately, it appears that these desirable properties are extremely non-robust.

We believe that our negative results are not mere peculiarities of the model, but are instead
due to fundamental market forces. With either multiple goods or multiple buyers, the buyer(s)
benefit substantially from the uncertainty the seller faces. While, at the surface, it still seems
plausible that a buyer should only gain utility from credibly revealing to the seller that they would
not be willing to pay the seller’s optimal reserve price, such disclosures may have secondary effects,
dramatically reducing the seller’s uncertainty to the point where the buyer(s) are ultimately harmed
in expectation.

We do note that, despite all of this negative evidence on the benefit of disclosure, there are in
fact instances where it can provably help.3 The main point of this paper is not that buyer welfare
and social welfare are always incompatible, or that the ability of buyers to disclose information
about their type is useless. Rather, instances with multiple buyers where disclosure is useful seem
to be the exception, rather than the norm.

There are still many dimensions to the voluntary disclosure model that have yet to be explored.
Most notable is the possibility of mixed strategies. A tantalizing open question, left unaddressed

3As an example, consider the following alternative prior distribution in which buyers have i.i.d. values, symmetric
strategies, and both Pareto improve in terms of interim utility by disclosing some information. The value distribution
will be discrete; with probability 99

100
they will have value 1000 and with probability 1

200
each, they will have value 1

and 2. With no disclosure, the revenue-optimal mechanism run by the seller will only sell at a price of 1000. This
means that buyers never receive positive utility as they cannot purchase the good for a price strictly less than their
value. On the other hand, suppose buyers disclose whether they are of “low” type with value in {1, 2} or “high”
type with value 1000. In the scenario where both buyers reveal a low type, from the sellers perspective, each buyer
has value 1 or 2 with probability 1

2
, so the optimal selling mechanism is a second price auction with reserve price

1. Hence, in the case where one buyer has value 2 and the other has value 1, the former will receive positive utility,
strictly improving on the no-disclosure setting.
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by this as well as prior work, is whether there exist mixed-strategy equilibria in which the buyer(s)
obtain strictly higher ex ante utility than in any pure-strategy equilibrium—one could imagine
a scenario where some buyer types are indifferent between multiple messages, some seller types
are indifferent between multiple prices, and somehow the complex belief distributions generated
yields a higher expected buyer surplus than would be possible with the simpler belief distributions
generated by pure messaging strategies. Even with the restriction that there is one buyer and one
good, we do not see an obvious way to rule out this possibility (even for simple distributions like
U [0, 1]), and while such a scenario may sound absurd in the one-buyer, one-good setting, it seems
entirely plausible with multiple buyers or goods.

An orthogonal extension of the model would be to allow the buyers to privately disclose infor-
mation to the seller, without other buyers observing the value. While possibly more applicable in
some scenarios, this model appears to be less tractable, as the seller’s revenue maximization prob-
lem cannot be solved independently for every possible tuple of buyer messages. Since the buyers
face uncertainty over which of these subgames they are in, standard tools from auction theory do
not apply; e.g., even for the setting from Section 4 of two uniform [0, 1] buyers sending connected
messages, a Myerson auction is no longer guaranteed to be optimal or incentive compatible.

A final direction for future work concerns the complexity of the BUYER-OPT decision problem.
Our reduction is from PARTITION, which is weakly NP-Hard, and it is clear that the optimal
values of the instances produced by the reduction can be approximated to arbitrary accuracy in
polynomial time. This leaves open the possibility of a pseudo-polynomial time algorithm for solving
this problem, or potentially some polynomial time approximation scheme.
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Appendix

A Proof of Theorem 5.2

To see that BUYER-OPT is in NP, observe that the Partitional Lemma implies there is a buyer-
optimal equilibrium induced by a partition of N . Given such a partition P, for every P ∈ P, there
are at most |P | prices the seller may choose to set (a price not equal to vi for some i ∈ P cannot
be optimal). Therefore, we can efficiently compute the optimal selling mechanism and its expected
buyer utility, then verify that the utility is at least U .

To prove hardness, we reduce from PARTITION, which is known to be weakly NP-hard [6]. In
terms of the notation defining BUYER-OPT and PARTITION, our reduction is defined as follows:

n := m+ 1

pi :=
2si
3S

for i ≤ m

vi := S − 1

4 + i
for i ≤ m

pn :=
1

3

vn :=
S

2

U :=
S

6
− 1

12

For the forward direction, suppose that I is a solution to the given PARTITION instance. Then
consider the partitional equilibrium induced by the partition

{I ∪ {n}, [m] \ I}.

To compute the buyer surplus, there are three cases to consider:

1. The buyer’s type is n.

2. The buyer’s type is in I.

3. The buyer’s type is in [m] \ I.

Observe that the first case occurs with probability 1
3 , and the second case occurs with probability

∑
i∈I

pi =
∑
i∈I

2si
3S

=
2
∑

i∈I si

3S
=

2 · S2
3S

=
1

3
,

so, in fact, all three cases occur with probability 1
3 . Consider the utility of the buyer in case (2), in

which the buyer reveals that their type is in I ∪{n}, so the seller knows they are in case (1) or (2).
Given this information, with probability 1

2 we are in case (1), so the buyer’s value is S
2 , and with

probability 1
2 , we are in case (2), so the buyer’s value is in the range (S − 1

4 , S). If the seller sets a
price in the range (S2 , S), they will exclude type n and only make a sale with probability 1

2 , so their
expected revenue is strictly less than S

2 . If the seller sets a price of S or greater, they will definitely
not make a sale, so their expected revenue is zero. In either case, their expected revenue is less
than S

2 , which is what they could get by setting a price of S
2 and guaranteeing sale. Therefore, the
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seller’s optimal price is at most S
2 . Since we are in case (2), the buyer has value at least S − 1

4 , so
the expected buyer surplus will be at least

S − 1

4
− S

2
=
S

2
− 1

4
.

Since case (2) occurs with probability 1
3 , the overall expected buyer surplus is at least

1

3

(
S

2
− 1

4

)
= U.

For the backward direction, suppose there is a pure-strategy equilibrium giving the buyer ex
ante expected utility at least U . By the Partitional Lemma, it is without loss of generality to
assume the equilibrium is induced by some partition P of [n]. Let I ⊆ [m] be the unique set of
types such that I ∪ {n} ∈ P. We claim that I is a solution to the PARTITION instance, i.e.,∑

i∈I
si =

S

2
.

For any i ∈ [n], let ri be the price the seller charges type i at equilibrium. Then

S

6
− 1

12
= U

≤
∑
i∈[n]

pi(vi − ri) (by the Efficiency Lemma and the definition of U)

=
∑

P∈P\{I∪{n}}

∑
i∈P

pi(vi − ri) +
∑
i∈I

pi(vi − ri) + pn(vn − rn)

=
∑

P∈P\{I∪{n}}

∑
i∈P

pi

(
vi −min

j∈P
vj

)
+
∑
i∈I

pi(vi − vn) + pn(vn − vn)

(by the Efficiency Lemma)

<
∑

P∈P\{I∪{n}}

∑
i∈P

pi

(
S −

(
S − 1

4

))
+
∑
i∈I

pi(S − vn)

(since, for all i ∈ [m], vi ∈ (S − 1

4
, S))

=
∑

P∈P\{I∪{n}}

∑
i∈P

pi

(
1

4

)
+
∑
i∈I

pi

(
S − S

2

)

=
1

4

∑
P∈P\{I∪{n}}

∑
i∈P

pi +
∑
i∈I

2si
3S
· S

2

=
1

4

∑
P∈P\{I∪{n}}

∑
i∈P

pi +
1

3

∑
i∈I

si

≤ 1

4
· 2

3
+

1

3

∑
i∈I

si

=
1

6
+

1

3

∑
i∈I

si
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Multiplying by 3 and rearranging, we have∑
i∈I

si >
S

2
− 3

4
.

Since
∑

i∈I si and S
2 are integers, it follows that∑

i∈I
si ≥

S

2
.

To prove the opposite inequality, suppose that the buyer reveals that their type is in I ∪ {n}.
If the seller sets a price of S − 1

4 , they exclude type n, and thus sell with probability∑
i∈I pi

1
3 +

∑
i∈I pi

,

so their expected revenue is (
S − 1

4

)( ∑
i∈I pi

1
3 +

∑
i∈I pi

)
.

Since the Efficiency Lemma implies that the seller instead chooses to sell at a price of S
2 for an

expected revenue of S
2 , we must have that(

S − 1

4

)( ∑
i∈I pi

1
3 +

∑
i∈I pi

)
≤ S

2
,

or, equivalently, (
S − 1

4

)∑
i∈I

pi ≤
S

2

(
1

3
+
∑
i∈I

pi

)
.

Rearranging again, we have

∑
i∈I

pi ≤
S
2 ·

1
3

S − 1
4 −

S
2

=
S
6

S
2 −

1
4

=
1

6S − 3
+

1

3
.

Plugging in the definition of pi, this becomes

2

3S

∑
i∈I

si ≤
1

6S − 3
+

1

3
,

which simplifies to ∑
i∈I

si ≤
3S

2(6S − 3)
+

3S

6
=

S

4S − 1
+
S

2

Since
∑

i∈I si and S
2 are integers and S

4S−1 < 1 for any positive integer S, it follows that

∑
i∈I

si ≤
S

2
.

Thus, we have equality, so I is a solution to the PARTITION instance.
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B Proof of Theorem 5.3

Consider a setting in which a buyer has possible values 1, 2, 2 + δ for some 0 < δ < 1 each with
probabilities 1

3 ,
5
9 ,

1
9 respectively. We will show that every equilibrium induced by a connected

partition gives the buyer expected utility at most δ
9 while an arbitrary partition can give expected

utility at least 1+δ
9 . This implies no approximation ratio better than 1+δ

δ is achievable. By letting
δ approach 0, this lower bound grows arbitrarily large.

Let us first show that when a buyer is allowed to report arbitrary subsets, there are equilibria
in which the buyer ex ante utility is at least 1+δ

9 . Consider the equilibrium induced by the partition
{{1, 2 + δ}, {2}}. Now, when the buyer reports {1, 2 + δ}, the seller will prefer to set a price of 1,
which will result in expected revenue 1, over 2 + δ, which (after updating their posterior,) will only
sell with probability 1

4 , resulting in expected revenue 2+δ
4 < 1. Hence, by setting a price of 1, the

buyer receives utility 1 + δ when they have value 2 + δ, so their ex ante utility is at least 1+δ
9 .

Next, we will upper bound the ex ante buyer utility of a connected partition strategy. First,
note that a seller will always choose a posted price p ∈ {1, 2, 2 + δ}. This implies that whenever a
buyer has value 1, they cannot receive any utility, as the price will always be at least 1. Further,
we will show that when a buyer has value 2, the seller will always set a posted price of at least 2.
Indeed, regardless of what the buyer reports, since messages must contain the buyer’s true value,
the seller knows that 2 is a possibility. Hence, if the buyer posts a price of 1, they will get expected
revenue 1, while if they post a price of 2, they will get expected revenue at least 5

9 · 2 > 1. This
implies in equilibrium they will never set a price of 1, so they buyer cannot receive any utility.
Finally, let us consider what happens when the buyer has true utility 2 + δ. In this case, if they
report {2 + δ}, the seller will set the price to 2 + δ and they will receive zero utility. On the other
hand, any other report will include 2 in the message, and by previous argument, the seller will not
set a price of 1, so the most utility they can receive is 2 + δ − 2 = δ. Hence, the buyer’s ex ante
utility is at most δ

9 .
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