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Abstract

We consider the fundamental problem of allocating T indivisible items that arrive over
time to n agents with additive preferences, with the goal of minimizing envy. This problem is
tightly connected to the problem of online multicolor discrepancy : vectors v1, . . . , vT ∈ Rd with
∥vi∥2 ≤ 1 arrive one at a time and must be, immediately and irrevocably, assigned to one of n

colors to minimize maxi,j∈[n]

∥∥∥∑v∈Si
v −

∑
v∈Sj

v
∥∥∥
∞

at each step, where Sℓ is the set of vectors

that are assigned color ℓ. The special case of n = 2 is called online vector balancing, introduced
by Spencer nearly half a century ago [Spencer, 1977]. It is known that multicolor discrepancy is
at least as hard as envy minimization: any bound for the former implies the same bound for the
latter. Against an adaptive adversary, both problems have the same optimal bound: Θ(

√
T ); it

is not known, however, whether the optimal bounds match against weaker adversaries.
Against an oblivious adversary, Alweiss et al. [2021] give an elegant upper bound of O(log T ),

with high probability, for the online multicolor discrepancy problem. In a recent breakthrough,
Kulkarni et al. [2024] improve this to O(

√
log T ) for the case of online vector balancing and

give a matching lower bound. However, it has remained an open problem whether a O(
√
log T )

bound is possible for multicolor discrepancy. Furthermore, these results give, as corollaries, the
state-of-the-art upper bounds for online envy minimization (against an oblivious adversary) for
n and two agents, respectively; it is an open problem whether better bounds are possible.

In this paper, we resolve all aforementioned open problems. We establish that online envy
minimization is, in fact, equivalent to online multicolor discrepancy against the oblivious adver-
sary: we give an upper bound of O(

√
log T ), with high probability, for multicolor discrepancy,

and a lower bound of Ω(
√
log T ) for envy minimization, resolving both problems. We proceed

to study weaker adversaries, where we prove that the two problems are no longer equivalent.
Against an i.i.d. adversary, we establish a separation: For online vector balancing, we give a

lower bound of Ω
(√

log T
log log T

)
, while for envy minimization, we give an algorithm that guaran-

tees a constant upper bound.

1 Introduction

We consider the fundamental problem of fairly allocating indivisible items that arrive sequentially
over time to agents with additive preferences. At each time step t, an item gt arrives and must be
allocated immediately and irrevocably to one of n agents. Each agent i has value vi,t ∈ [0, 1] for gt,
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which is revealed only upon the item’s arrival. Our objective is to ensure that the final allocation
is fair, which we measure through the notion of envy-freeness. Concretely, our goal is to minimize

maxi,j∈[n]

(∑
t∈AT

j
vi,t −

∑
t∈AT

i
vi,t

)
, where ATℓ is the allocation of agent ℓ after all T items have

been allocated. The canonical motivation for this problem is that of food banks [Aleksandrov et al.,
2015, Lee et al., 2019, Mertzanidis et al., 2024], which receive food donations and allocate them
to non-profits (e.g., food pantries). Ensuring that no organization is significantly disadvantaged
relative to others is a natural challenge in such settings.

A crucial question in this problem is what assumptions can we reasonably make about the items’
values? Different assumptions lead to vastly different fairness guarantees.

At one extreme, many works assume that the vector of values for gt, (v1,t, . . . , vn,t), is drawn
independently from a fixed distribution D. This assumption allows for strong positive results: If
T is sufficiently large, with high probability, we can find allocations that are completely envy-
free, achieving a maximum of at most 0. However, this setting has notable downsides. First, in
many practical scenarios, T may need to be quite large before these guarantees become mean-
ingful. Furthermore, the distributional assumption rules out natural hard instances—such as a
single high-value item that agents agree is better than all others combined—where envy-freeness is
fundamentally unattainable.

At the other extreme, we can consider fully adversarial settings, where item values are chosen
adaptively : an adversary, observing the allocation algorithm and all allocation decisions made so
far, selects each item’s values in order to maximize envy at the end. Prior work has shown that
in such a setting, any online algorithm must incur envy at least Ω(

√
T ), even when there are only

n = 2 agents [Benadè et al., 2024b]. While this model captures the absolute worst-case scenario, it
may be overly pessimistic for many real-world applications.

In this paper, we explore intermediate adversaries. One particularly natural, yet robust, as-
sumption is that of an oblivious adversary, which selects worst-case item values in advance, knowing
only the algorithm, and not depending on the specific allocation choices made in previous rounds.
To better understand this problem, it is useful to consider the closely related online vector balancing
problem, introduced by Spencer nearly half a century ago [Spencer, 1977], and its generalization,
online multicolor discrepancy.

In online vector balancing, at each time step t, a vector vt with ∥vt∥2 ≤ 1 arrives and must
be assigned immediately and irrevocably to one of two bundles. The key object of study is the
discrepancy vector at time t: dt :=

∑
v∈St

1
v−
∑

v∈St
2
v where St1 and St2 be the set of vectors assigned

to each bundle after t steps. The goal is to keep the ℓ∞-norm of all dts as small as possible.1 That
is, find the smallest B for which maxt∈[T ] ∥dt∥∞ ≤ B (or, if randomness is involved, given a δ, the
smallest B for which this holds with probability 1− δ).

In online multicolor discrepancy, instead of two bundles, there are n bundles [Bansal et al.,
2021]. At each time step t, a vector vt ∈ Rd with ∥vt∥2 ≤ 1 arrives and must be assigned one of n
bundles (often framed as assigning the vector one of n colors). The goal is to minimize the maximum

discrepancy between any pair of bundles, defined as maxt∈[T ],i,j∈[n]

∥∥∥∑z∈St
i
z −

∑
z∈St

j
z
∥∥∥
∞

where

Sti denotes the set of vectors assigned to bundle i after t steps. Online vector balancing corresponds
to the special case of n = 2.

These problems are particularly useful because algorithms for online multicolor discrepancy can

1The classic problem is more frequently formalized as choosing a sign χt ∈ {−1, 1}, and setting dt :=
∑t

i=1 χivi.
Our formulation is equivalent, using notation more consistent with envy-minimization.
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be directly applied to envy-minimization: the item values (v1,t, . . . , vn,t) can be treated as input
vectors to a discrepancy algorithm, and the resulting envy is upper bounded by the discrepancy.2

Additionally, algorithms for online vector balancing can be used for envy-minimization when n = 2.
However, discrepancy problems are generally more challenging than envy-minimization for four
key reasons: (i) the discrepancy must remain small at all time steps t, not just at time T , (ii)
input vectors in discrepancy problems may have negative entries, whereas item values in envy
minimization are nonnegative, (iii) discrepancy requires bounding the ℓ∞ norm, whereas in envy
minimization, very negative envy is allowed,3 and (iv) in envy-minimization the vectors always
have dimension d = n, while in discrepancy we need to handle arbitrary combinations of n and d.

We now summarize the best-known bounds for these problems. For online vector balancing, a
simple greedy algorithm achieves a bound ofO(

√
T ) against an adaptive adversary, which was shown

to be tight by Spencer [1977, 1994]. Against a weaker, oblivious adversary, Alweiss et al. [2021]
proposed an elegant algorithm that guarantees an O(log T ) bound with high probability. In a recent
breakthrough, Kulkarni et al. [2024] give an algorithm that guarantees an O(

√
log T ) bound with

high probability, as well as a matching lower bound, thus resolving the vector balancing problem
against an oblivious adversary. An immediate implication of this result is a O(

√
log T ) bound, with

high probability, for online envy minimization with n = 2 agents against an oblivious adversary;
however, no corresponding lower bound for envy minimization was known.4 For online multicolor
discrepancy against an adaptive adversary, a O(

√
T ) bound is possible, while against an oblivious

adversary, the best known result was an O(log T ) bound with high probability [Alweiss et al., 2021].
This directly implies an O(log T ) with high probability bound for online envy minimization problem
with n agents.

Overall, the state-of-the-art can be summarized as follows. Online envy minimization is exactly
as hard as online multicolor discrepancy against an adaptive adversary. And, for all we know,
this could be the case for an oblivious adversary as well: there are no known lower bounds for
online envy minimization, and the best known upper bounds for n = 2 and n > 2 agents are
implications of online vector balancing and online multicolor discrepancy, respectively. There is a
gap between the best known bound for online vector balancing (O(

√
log T ), which is known to be

optimal) and online multicolor discrepancy (O(log T ), which is not known to be optimal). Finally,
for all we know, online envy minimization could be as hard as online multicolor discrepancy for
stochastic adversaries, weaker than an oblivious adversary, where we only know lower bounds for
online multicolor discrepancy.5 Simply put, the goal of this paper is to resolve these gaps in our
understanding of online envy minimization and online multicolor discrepancy.

2Since envy-minimization values are only bounded in [0, 1], the ℓ2-norm may be as large as
√
n, increasing the

bounds by a factor of
√
n. However, since we primarily focus on bounds as a function of T , this detail is less critical.

3In fact, a consequence of this is that positive results for online multicolor discrepancy give online algorithms for
computing a near-perfect allocation (a perfect allocation A satisfies vi(Aj) = vi([m])/n for all agents i, j), a problem
harder than computing a small-envy allocation.

4It is worth mentioning that [Benadè et al., 2024b] prove that sublinear envy is incompatible with non-trivial
efficiency guarantees against an oblivious adversary. This result, however, has no implications for envy minimization.

5As we explain in detail later in the paper, known positive results for online envy minimization against stochastic
adversaries, e.g. [Benadè et al., 2024b], rely on certain technical assumptions, rendering them incompatible with the
online vector balancing literature.
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1.1 Our results

In Theorem 5 we prove the existence of an algorithm for the online multicolor discrepancy problem
that achieves a bound of O(

√
log T ), with high probability, against an oblivious adversary. This

result directly implies the same bound for online envy minimization with n agents (Corollary 1).
We also give a matching lower bound in Theorem 7: for any r ∈ (0, 1), an oblivious adversary can
guarantee envy at least Ω((log(T ))r/2) with probability at least 1/T . Thus, we resolve both prob-
lems, online multicolor discrepancy and envy minimization, against an oblivious adversary. Overall,
these results show that, similar to the case of an adaptive adversary, online envy minimization is
exactly as hard as online multicolor discrepancy against an oblivious adversary.

Next, we analyze a stochastic, i.i.d. adversary that selects a distribution D such that, in online
multicolor discrepancy (respectively, envy minimization), vt,i ∼ D, for all rounds t and i ∈ [d]
(respectively, vi,t ∼ D, for all agents i and items gt). In the discrepancy minimization literature,
Bansal and Spencer [2020] consider a similar model, where each coordinate of the arriving vectors
is sampled uniformly at random from the set {−1, 1}, achieving an O(

√
n log T ) bound with high

probability. Other works in the discrepancy minimization world use the term “i.i.d.” to refer to
settings where dependence over the coordinates is allowed; e.g., in [Bansal et al., 2020] vectors

v1, . . . vT are sampled i.i.d. from a distribution over [−1, 1]d; here, a lower bound of Ω
(√

log T
log log T

)
,

with constant probability, is known. In Theorem 8 we prove that there exists a distribution for

which every algorithm must have discrepancy at least Ω
(√

log T
log log T

)
with high probability, even

in our “easier” i.i.d. model. This result implies that the upper bound in Theorem 5 against an
oblivious adversary cannot be improved, up to log log factors, even against a much weaker i.i.d.
adversary.

In the fair division literature, many works provide guarantees in stochastic models. However, to
the best of our knowledge, all previous results are asymptotic with respect to the number of items.
Specifically, as observed by Bansal et al. [2020], an innocuous-looking (and prevalent) assumption
in stochastic fair division is that the adversary’s distribution does not depend on the number of
items T (e.g., ruling out a variance of 1/T ). The setup is typically as follows: given a number of
agents n, the adversary specifies a distribution D. The designer, who knows this distribution, then
selects a (possibly randomized) algorithm. Nature then selects a number of items T . In every round
t, the value of item t for each agent i is drawn independently from D, i.e., vi,t ∼ D. Under such
a “constant distribution” assumption, envy-freeness with “high probability” means “probability at
least 1−O(1/poly(T )),” where D is treated as a constant. In this easier setup, envy-freeness with
high probability is known to be compatible with Pareto Efficiency ex-post, even online [Benadè
et al., 2024b]. Removing the “constant distribution” assumption introduces numerous technical
obstacles; see Section 1.3 for a discussion. In this paper, we give an online algorithm that guarantees
envy of at most c+ 1 with probability at least 1−O(T−c/2) regardless of the distribution.

See Table 1 for a summary of our results.

1.2 Technical overview: multicolor discrepancy against an oblivious adversary

To obtain an optimal algorithm for online vector balancing, Kulkarni et al. [2024] think of their
problem as picking random signs for the edges of a (massive) rooted tree T = (V,E). Each
edge e of the tree corresponds to a vector ve, a possible choice for the adversary (after some
discretization of the adversary’s available options). The adversary picks a path from the root to a
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Table 1: Our results for Online Multicolor Discrepancy (OMD) and Envy Minimization (OEM)

Oblivious i.i.d.
Upper Bound Lower Bound Upper Bound Lower Bound

OMD O(
√
log T ) [Thm 5] Ω((log T )r/2) O(

√
log T ) [Thm 5] Ω

(√
log T

log log T

)
[Thm 8]

OEM O(
√
log T ) [Cor. 1] Ω((log T )r/2) [Thm. 7] O(1) [Thm. 9] -

leaf, which is revealed one edge at a time, and, after learning an edge, the algorithm must assign
a (random) sign xe ∈ {−1, 1}. The first and most challenging step in Kulkarni et al.’s proof is
to show that, for any convex body K that is sufficiently large, and any rooted tree T = (V,E)
(whose edges have associated vectors), there exist signs x ∈ {−1, 1}E such that, for some constant
α < 5,

∑
e∈P xeve ∈ αK, for any root-node path P . This result generalizes a well-known result of

Banaszczyk [2012] from paths to trees. Kulkarni et al. then show how to go from a single choice
of signs x to a distribution D over signs, so that for y ∼ D,

∑
e∈P yeve is γ-subgaussian for some

constant γ. Finally, they show that by taking a fine enough ε-net of the unit ball and constructing
an appropriate rooted tree T , whose edges correspond to vectors of the ε-net, the distribution D
over signs implies an optimal algorithm for online vector balancing.

Our approach for online multicolor discrepancy follows the same high-level steps. Intuitively,
in Kulkarni et al. [2024]’s blueprint for online vector balancing, we could think of the adversary as
picking a set Se = {ve,−ve}, and the algorithm picking one of the two vectors from Se for each
edge e. The first and most challenging step of our proof is to extend the result of [Kulkarni et al.,
2024] from trees where edges have associated vectors (or sets of size two) to trees where edges have
associated sets of arbitrary size. Concretely, in Theorem 2 we prove that, given any rooted tree
T = (V,E) where every edge e ∈ E has an associated set of vectors Se ⊆ Bd2 (satisfying a couple
of technical assumptions, for example, 0 ∈ Conv(Se)), and a sufficiently large symmetric convex
body K, there exists a vector ve ∈ Se, such that for all u ∈ V ,

∑
e∈Pu

ve ∈ 11K, where Pu is the set
of edges of the path from the root to the node u. To prove Theorem 2 we start with a fractional
selection xe = (xe1, . . . , x

e
|Se|) of vectors for each edge e, such that the desired property is satisfied.

We iteratively round this fractional selection, so that each step does not increase
∑

e∈Pu
xeve by

too much, so that the final, integral selection has the desired property. Our rounding is bit-by-bit,
inspired by similar procedures by [Bansal et al., 2022, Lovász et al., 1986]. Our process has two
steps. First, we prove that each xei can be rounded so that its fractional part is at most k bits long
(for some small k). Then, we iteratively reduce the number of bits in the fractional part by rounding
each remaining bit, one at a time, until all values become integers. The rounding decisions—which
bits get rounded down to 0 and which bits are rounded up to 1—are guided by a black-box call
to [Kulkarni et al., 2024]’s extension of Banaszczyk’s result to a certain blown-up tree (where the
{−1, 1} signs tell us whether to round up or down).

With Theorem 2 in hand, we prove there exists a distribution D over vectors (one from each
edge set) such that for x ∼ D,

∑
e∈Pu

xe is subgaussian, for every node u ∈ V (Theorem 3). Finally,
we prove that there exists an algorithm that, given sets of vectors one at a time, selects a vector
from each set such that the vector sum is O(1)-subgaussian (Theorem 4). This algorithm can be
used to get an algorithm for weighted online vector balancing (Lemma 1), which can, in turn, be
used to give an algorithm for online multicolor discrepancy (Theorem 5).
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1.3 Technical overview: online item allocation against a random adversary

For the case of an i.i.d. adversary, where each vi,t ∼ D, we establish even tighter bounds: the
maximum envy is a constant with all but polynomially small probability in T . Strikingly, the
algorithms achieving this guarantee are distribution-independent.

Prior work [Dickerson et al., 2014] shows that, for a fixed distribution D, assuming T is suffi-
ciently large, the simple welfare maximization algorithm—“allocate each item t to argmaxi∈[n] vi,t”—
achieves envy-freeness with high probability. Here, we seek bounds that depend only on T , and are
independent of D. Unfortunately, for any choice of T , there exist distributions D where welfare
maximization results in Θ(

√
T ) envy.

Our algorithm works in two phases. The first phase is welfare maximization; this phase might
generate significant envy. The second phase, consisting of the final Θ(log T

√
T ) items, mitigates

this envy. At every step t, we single out a set of agents who have not received a large number
of items (within this phase). Among this set, we allocate item t to the agent who is envied the
least by agents in this set. The key challenges are (i) ensuring that phase two is sufficiently long
so that the envy generated during phase one is eliminated, and (ii) preventing endless cycles of
envy, where eliminating the envy of agent i inadvertently causes another agent j to envy i. As we
show, running welfare maximization for longer, i.e., having a longer phase one, makes envy cycles
lighter (but increases the maximum envy). Therefore, properties (i) and (ii) are, in fact, in tension:
the length of the two phases must be carefully chosen to simultaneously satisfy these competing
requirements.

Let Ht be a graph with agents as nodes and an edge (i, j) if, at step t, agent i envies agent j
by at least a constant c. Our goal is to ensure that Ht is empty after all items have been allocated.
Intuitively, allocating an item to an agent i decreases the prevalence of outgoing edges and increases
the prevalence of incoming edges of node i. Moreover, after running welfare maximization phase,
Ht is guaranteed to be acyclic. To prevent new edges from forming, during phase 2, we allocate
arriving items to sources in Ht.

Our first major technical hurdle (Lemma 2) is ensuring that no cycles form in Ht, for any 1 ≤
t ≤ T , which would make allocating to source nodes impossible (and seemingly make eliminating
envy extremely challenging). The second major hurdle (Lemma 6) is showing that giving agent i
a moderate number of items more than agent j during phase 2—specifically ⌈log T

√
T ⌉—suffices

to remove the edge (i, j). Crucially, both of these are statements about all time steps t. However,
phase 2 induces correlations between Ht and Ht+1, making it difficult to maintain an analytical
handle on this graph.

To address this, we introduce an alternate sampling method that, from the algorithm’s per-
spective, is identical to the standard sampling process. We pre-sample a large pool of items (in
quantile space) and choose which item arrives next based on which agent will receive it. This is
only possible because phase 2 decisions are agnostic to the arriving item’s values. Importantly, this
approach makes Ht depend only on the number of times each agent received an item rather than
the specific time steps at which they were received, giving traction toward the lemmas.

A final challenge is ensuring that our results hold for any distribution without additional as-
sumptions. Crucially, we cannot apply standard concentration inequalities, as those typically re-
quire a large number of items or specific distributional properties (e.g., a lower bound on variance).
To address this, we derive a new distribution-agnostic concentration inequality (tailored to our
specific task of bounding the envy), which might be of independent interest.
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1.4 Related work

Online Vector Balancing When the incoming vectors satisfy ∥vi∥2 ≤ 1, then randomly coloring
the vectors {−1,+1} achieves a discrepancy of

√
T log d, even for the case of an adaptive adversary.

A matching lower bound of Ω(
√
T ) was proved by Spencer [1977, 1994]. The stochastic setting

for online vector balancing was first studied in [Bansal and Spencer, 2020]. They considered a
setting where the incoming vectors are chosen i.i.d. from the uniform distribution over all vectors
in {−1, 1}n and gave an algorithm for achieving a O(

√
d log T ) bound on discrepancy at all time

steps till T . This was later improved by Bansal et al. [2020] who showed a O(d2 log nT ) upper
bound for any distribution supported on [−1, 1]n. The work of Bansal et al. [2021] improved the
dependence on d by showing that O(

√
d log4 dT ) discrepancy can be achieved. The dependence on

T was further improved to Od(
√

log(T )) by Aru et al. [2018], where the implicit dependence on d
was super-exponential.

The setting of an oblivious adversary remained relatively under-explored until the recent work
of Alweiss et al. [2021]. They design an extremely simple and elegant algorithm that achieves
a bound of O(log nT ) for both online vector balancing and online multicolor discrepancy. Their
algorithm is based on a self-balancing random walk, which for vector balancing, ensures that the
discrepancy prefix vector is O(

√
log nT )-subgaussian. A tight bound of Θ(

√
log T ) for online vector

balancing was achieved by Kulkarni et al. [2024], who proved the existence of an algorithm that
maintains O(1)-subgaussian prefix vectors.

Stochastic Fair Division Stochastic fair division, introduced by Dickerson et al. [2014], studies
the existence of fair allocations when valuations are drawn from a distribution. Dickerson et al.
show that maximizing utilitarian welfare produces an envy-free allocation with high probability
when the number of items T ∈ Ω(n log n) and items values are drawn i.i.d. from a fixed “constant
distribution” (i.e., the distribution does not depend on the number of items). Manurangsi and
Suksompong [2020, 2021] establish tight bounds for the existence of envy-free allocations in the
“constant distribution” i.i.d. model: T ∈ Ω(n log n/ log logn) is both a necessary and sufficient
condition. Bai and Gölz [2022] extend the result to the case of independent but non-identical
additive agents.

Beyond envy-freeness, weaker fairness notions such as maximin share fair [Kurokawa et al.,
2016, Amanatidis et al., 2017, Farhadi et al., 2019] and proportional [Suksompong, 2016] allocations
exist with high probability. Finally, the existence of fair allocations for agents with non-additive
stochastic valuations are studied in [Manurangsi and Suksompong, 2021, Gan et al., 2019, Benadè
et al., 2024a].

Online Fair Division A rich literature studies online or dynamic fair division. Numerous works
study the problem where divisible or indivisible items arrive over time, with the goal of optimizing
utilitarian welfare [Gkatzelis et al., 2021, Bogomolnaia et al., 2022], egalitarian welfare [Springer
et al., 2022, Kawase and Sumita, 2022], Nash welfare [Gao et al., 2021, Banerjee et al., 2022,
Liao et al., 2022, Huang et al., 2023, Yang et al., 2024], the generalized mean of the agents’
utilities [Barman et al., 2022], and approximation of the maximin share guarantee [Zhou et al.,
2023].

Closer to our work, the aforementioned works [Dickerson et al., 2014, Bai and Gölz, 2022]
prove that maximizing welfare and weighted welfare—algorithms that can be implemented online—
achieve envy-freeness with high probability, in addition to Pareto efficiency, when valuations are
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drawn i.i.d. from “constant” distributions for identical and non-identical agents. Benadè et al.
[2024b] prove that even when correlation is allowed between agents (but items are independent),
Pareto efficiency and fairness are compatible in the online setting—the specific fairness guarantee
for a pair of agents i, j is “either i envies j by at most 1 item, or i does not envy j with high
probability”; again, distributions are treated as constants. To the best of our knowledge, we are
the first to study the stochastic setting (online or offline) without the “constant distribution”
assumption.

There are several variations of the standard models, e.g., revocable allocations [He et al., 2019,
Yang, 2023], only having access to pairwise comparisons [Benadè et al., 2025], two-sided match-
ing [Mertzanidis et al., 2024], items arriving in batches [Benadè et al., 2018], and repeated alloca-
tions [Igarashi et al., 2024]. Further afield, many works study the “inverse” problem of allocating
static resources to agents that arrive/depart over time [Kash et al., 2014, Li et al., 2018, Sinclair
et al., 2022, Vardi et al., 2022, Banerjee et al., 2023].

2 Preliminaries

Throughout the paper we will use Sd−1 := {x ∈ Rd : ∥x∥2 = 1} to denote the Euclidean sphere in
Rd and Bd2 := {x ∈ Rd : ∥x∥2 ≤ 1} for the Euclidean ball in Rd.

Online Multicolor Discrepancy. In the online multicolor discrepancy problem, there is a set of
T vectors, v1, v2, . . . , vT ∈ Bd2 . At each time step t ∈ [T ], vector vt arrives and must be immediately
and irrevocably assigned to one of n colors. Our algorithms learn vt at step t. Let Sti be the
set of vectors that are assigned color i up until time t. The discrepancy at time t is defined

as maxi,j∈[n]

∥∥∥∑v∈St
i
v −

∑
v∈St

j

∥∥∥
∞
. Our goal in the online multicolor discrepancy problem is to

minimize the maximum discrepancy over all time steps, that is, minimize

max
t∈[T ]

max
i,j∈[n]

∥∥∥∥∥∥∥
∑
v∈St

i

v −
∑
v∈St

j

v

∥∥∥∥∥∥∥
∞

.

The online vector balancing problem is the special case of the multicolor discrepancy problem where
n = 2.

Online Envy Minimization. In the online envy minimization problem, there is a set of T
indivisible items (also referred to as goods) to be allocated to a set of n agents N . At each time
step t ∈ [T ], item gt arrives and must be immediately and irrevocably allocated to one of the agents
in N . Item gt has an associated vector vt ∈ [0, 1]n such that vt = (v1,t, v2,t, . . . , vn,t) where vi,t
denotes agent i’s value for item gt. Our algorithms learn vt at step t. Let At = (At1, A

t
2, . . . , A

t
n)

be the allocation at the end of time t (i.e., after gt has been allocated) such that for each i ∈ N ,
we have Ati ⊆ {g1, g2, . . . , gt}, ∪i∈NAti = {g1, g2, . . . , gt}, and Ati ∩Atj = ∅ for each i ̸= j. The value
of agent i ∈ N for any set of items (also referred as a bundle) S ⊆ {g1, g2, . . . , gT } is denoted by
vi(S) :=

∑
gk∈S vi,k, i.e., the preferences of agents are additive.

At each timestep t, and for any pair of agents i, j ∈ N , we define Envyti,j(A
t) := vi(A

t
j)− vi(A

t
i)

to be the difference in value, with respect to agent i’s preferences, between the bundle of agent
j at time t and the bundle of agent i at time t. The maximum envy at time t ≤ T is denoted

8



by Envyt(At) = maxi,j∈[n] Envyti,j(A
t). Our goal in the online envy minimization problem is to

minimize the maximum envy at time T , that is, minimize EnvyT = EnvyT (AT ).

Adversary models. For both problems, our results crucially depend on how the input (vec-
tors/agents’ values) are generated. It will be convenient to think of a game between an adversary,
who picks the input, and the designer, who picks an online algorithm.

First, we consider an oblivious adversary. In the online multicolor discrepancy problem, given
a number of colors n, a number of vectors T , and a dimension d, the designer picks a (possibly
randomized) algorithm. Then, an oblivious adversary, who knows the algorithm’s “code,” but
does not have access to any of the randomness the algorithm uses, selects all T vectors, which are
presented to the algorithm one at a time, in the order the oblivious adversary selected at the start
of the game. In the online envy minimization problem, given a number of agents n and a number of
items T , the designer picks a (possibly randomized) algorithm. Then, an oblivious adversary, who
knows the algorithm’s “code,” but does not have access to any of the randomness the algorithm
uses, selects the agents’ values for all T items, which are presented to the algorithm one at a time,
in the order the oblivious adversary selected at the start of the game.

Second, we consider an i.i.d. adversary. In the online multicolor discrepancy problem, given
a number of colors n, a number of vectors T , and a dimension d, a stochastic adversary specifies
a distribution D, supported on [−1, 1]. The designer, who knows this distribution, then selects a
(possibly randomized) algorithm. In every round t, the vector vt is generated by sampling each of
its coordinates (independently) from D, i.e., vt,j ∼ D for all j ∈ [d]. In the online envy minimization
problem, given a number of agents n and a number of items T , the stochastic adversary specifies
a distribution D, supported on [0, 1]. The designer, who knows this distribution, then selects a
(possibly randomized) algorithm. In every round t, the value of item t for each agent i is drawn
independently from D, i.e., vi,t ∼ D.

2.1 Other technical preliminaries

Geometry definitions. A body K ⊆ Rd is convex if and only if x, y ∈ K implies that αx+(1−
α)y ∈ K for any α ∈ [0, 1]. A body K ⊆ Rd is symmetric if and only if x ∈ K implies that −x ∈ K
as well. We use 0 ∈ Rd to denote the origin. The Gaussian measure γd(K) for a body K ⊆ Rd is
defined as γd(K) := Prv∼N (0,Id)[v ∈ K] and denotes the probability that a random vector v, drawn

from the standard Gaussian N (0, Id) in Rd, is in the body K. We use the following result about
convex bodies [Ball, 1997]; the proof is included in Appendix A for completeness.

Proposition 1. If γd(K) ≥ 1/2 + ε for a convex body K ⊆ Rd, for some ε > 0, then εBd2 ⊆ K.

Given a set S ⊆ Rd, we will use Conv(S) := {v : v =
∑

u∈S u · xu,
∑

u∈S xu = 1, and xu ≥
0 for all u ∈ S} to denote the convex hull of S. Given a set A ⊆ Rd, a set W ⊆ A is called an ε-net
of S if for all x ∈ A there is a y ∈ W such that ∥x− y∥2 ≤ ε. For any ε ∈ (0, 1], there exists an

ε-net of Bd2 of size at most
(
3
ε

)d
; see [Kulkarni et al., 2024] for a proof. We will use the following

analogous statement for×k
i=1 B

d
2 .

Proposition 2. For any ε ∈ (0, 1], there exists an ε-net of×k
i=1 B

d
2 that is of size at most

(
3
ε

)dk
.

Proof. There is a natural bijection f : Bdk2 →×k
i=1 B

d
2 where each z = (z1,1, . . . , z1,d, z2,1, . . . , z2,d

. . . , zk,1, . . . , zk,d) ∈ Bdk2 corresponds to f(z) = ((z1,1, . . . , z1,d), (z2,1, . . . , z2,d), . . . , (zk,1, . . . , zk,d)) ∈
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×k
i=1 B

d
2 . This bijection preserves distances: for any z, z′ ∈ Bdk2 , we have ∥z − z′∥2 = k if and only

if ∥f(z)− f(z′)∥2 = k.6 Hence an ε-net of Bdk2 , via f , corresponds to an ε-net of×k
i=1 B

d
2 . Since

Bdk2 has an ε-net of size at most
(
3
ε

)dk
(by the result of [Kulkarni et al., 2024]).

Subgaussian distributions.

Definition 1 (Subgaussian norm). For a real-valued random variable X, the subgaussian norm is
defined as ∥X∥ψ2

:= inf{t > 0 : E[exp(X2/t2)] ≤ 2}. For a random vector Y taking values in Rd,
∥Y ∥ψ2,∞ := supw∈Sd−1 ∥⟨Y,w⟩∥ψ2

.

We say that a random vector Y taking values in Rd is β-subgaussian if ∥Y ∥ψ2,∞ ≤ β. We use

the following two properties of norms: (i) for a random vector Y taking values in Rd and any k ≥ 0,
we have ∥kY ∥ψ2,∞ = k ∥Y ∥ψ2,∞ (homogeneity); (ii) for random vectors Y and Z in Rd, we have
∥X + Y ∥ψ2,∞ ≤ ∥X∥ψ2,∞ + ∥Y ∥ψ2,∞ (triangle inequality). We also use the following proposition.

Proposition 3. For a random vector X taking values in Rd, if ∥X∥ψ2,∞ ≤ C, then, for all ℓ > 0,

Pr[∥X∥2 ≥ C
√
log(ℓ)] ≤ 2/ℓ.

Proof. By the definition of ∥.∥ψ2,∞ we have that, for all w ∈ Sd−1, ∥⟨X,w⟩∥ψ2
≤ C. By the

definition of ∥.∥ψ2
, this in turn implies that for all w ∈ Sd−1, E[exp((⟨X,w⟩)2 /C2)] ≤ 2. Using

Markov’s inequality we therefore have that for all w ∈ Sd−1 and ℓ > 0, Pr[e(⟨X,w⟩)
2/C2 ≥ ℓ] · ℓ ≤ 2,

or, equivalently, Pr[|⟨X,w⟩| ≥ C
√
ln(ℓ)] ≤ 2

ℓ , or

Pr
[
∥X∥2 | cos(θ)| ≥ C

√
ln(ℓ)

]
≤ 2

ℓ
,

where θ is the (random) angle between X and w. Since | cos(θ)| ≤ 1, the proposition follows.

3 Performance Against an Oblivious Adversary

In this section, we prove that there exists an algorithm for the online multicolor discrepancy problem
that guarantees, with high probability, a maximum discrepancy of O(

√
log T ) against an oblivious

adversary (Section 3.2); there is a matching lower bound for the online vector balancing prob-
lem [Kulkarni et al., 2024], therefore our algorithm for the online multicolor discrepancy problem
is optimal. As a corollary, we get an algorithm that guarantees, with high probability, an envy of
O(
√
log T ), against an oblivious adversary, for the online envy minimization problem; we give a

matching lower bound in Section 3.3. Missing proofs are deferred to Appendix B.

3.1 Balancing sets of vectors

Similar to the result of Kulkarni et al. [2024], we think of a discretized adversary whose choices
correspond to the edges of a (massive) rooted tree. Kulkarni et al. prove the following:

6With a slight abuse in notation we use ∥f(z)− f(z′)∥2 to denote
∑k

i=1 ∥f(z)i − f(z′)i∥2 where f(z) =

(f(z)1, f(z)2, . . . , f(z)k) ∈×k

i=1
Bd

2 and f(z′) = (f(z′)1, f(z
′)2, . . . , f(z

′)k) ∈×k

i=1
Bd

2 .
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Theorem 1 ([Kulkarni et al., 2024]). Let T = (V,E) be a rooted tree, where every edge e ∈ E has
a corresponding vector ve ∈ Bd2. Let K ⊆ Rd be a convex body with γd(K) ≥ 1 − 1

2|E| . Then there

exists z ∈ {−1, 1}|E| such that, for all u ∈ V , the vector sum
∑

e∈Pu
zeve ∈ 5K, where Pu is the set

of edges of the path from the root to the node u.

For our result, we think of the adversary as assigning a set of vectors Se to each edge e, and
prove that we can choose a vector from each set Se, so that all paths from the root are balanced.

Theorem 2. Let T = (V,E), |E| ≥ 2, be a rooted tree such that: (1) every e ∈ E has an associated
set of vectors Se ⊆ Bd2 satisfying 0 ∈ Conv(Se), and (2) there exists an ℓ ∈ N, ℓ ≥ 2, such that,
for all e ∈ E, 0 is a convex combination of at most ℓ vectors in Se. Let K ⊆ Rd be a symmetric
convex body with γd(K) ≥ 1− 1

ℓ |E| . Then, for every edge e ∈ E, there exists a vector ve ∈ Se, such

that for all u ∈ V ,
∑

e∈Pu
ve ∈ 11K, where Pu is the set of edges of the path from the root to the

node u.

Proof. Our goal is to select a vector ve ∈ Se from each set Se to satisfy the desired property. At
a high level, we start with a fractional selection of vectors from each set Se such that, for every
node u ∈ V , the fractional vector sum of the edges in the path from the root to u is 0 (so, the
desired property of being contained in 11K is clearly satisfied). We iteratively round this fractional
selection to get a single vector from each set Se, in a way that every rounding step does not increase
the vector sums we are interested in by too much.

For all e ∈ E, by definition, 0 ∈ Conv(Se) and 0 is a convex combination of at most ℓ vectors
in Se. Therefore there exists a fractional selection of vectors Xe = {(ve1, xe1), (ve2, xe2), . . . , (veℓ , xeℓ)},
with (vei , x

e
i ) ∈ Se × [0, 1], such that

∑ℓ
i=1 x

e
i · vei = 0, and Xe is feasible, i.e.,

∑ℓ
i=1 x

e
i = 1 and

xei ∈ [0, 1], for all i ∈ [ℓ]. In the subsequent proof, we show the following two claims:

(a) We can round each xei to x̂ei such that (i) for every e ∈ E,
∑ℓ

i=1 x̂
e
i = 1, and x̂ei ∈ [0, 1] for all

i ∈ [ℓ], (ii) the fractional part of each x̂ei is at most log(2 ℓ hε ) bits long, where h is the height

of the tree T and ε = 1
2 −

1
ℓ|E| > 0, and (iii) for all u ∈ V , we have

∑
e∈Pu

∑ℓ
i=1 x̂

e
i · vei ∈ K.

(b) Let Y e = {(ve1, ye1), . . . , (veℓ , yeℓ )} be a feasible (
∑ℓ

i=1 y
e
i = 1 and yei ∈ [0, 1] for all i ∈ [ℓ]),

fractional selection of vectors. If, for every e ∈ E and i ∈ [ℓ], the fractional part of yei is k ≥ 1
bits long, then we can round the kth-bit of all {yei }i,e to get {ŷei }i,e, whose fractional parts

are at most k − 1 bits long, and, for every u ∈ V ,
(∑

e∈Pu

∑ℓ
i=1 ŷ

e
i v
e
i −

∑
e∈Pu

∑ℓ
i=1 y

e
i v
e
i

)
∈

2−k · 10K.

Starting from the fractional selection Xe, applying the rounding process of (a) gives us a feasible
fractional selection X̂e such that

∑
e∈Pu

∑ℓ
i=1 x̂

e
i · vei ∈ K. Then, repeatedly applying the rounding

process of (b), starting from the fractional selection X̂e, results in an integral selection, after at
most log(2 ℓ hε ) steps. Let Ae = {aei}i∈[ℓ], where aei ∈ {0, 1} and

∑ℓ
i=1 a

e
i = 1, be the integral selec-

tion obtained at the end of the process. We have that
(∑

e∈Pu

∑ℓ
i=1 a

e
iv
e
i −

∑
e∈Pu

∑ℓ
i=1 x̂

e
iv
e
i

)
∈(

2− log( 2 ℓ h
ε

) + 2− log( 2 ℓ h
ε

)+1 + · · ·+ 2−1
)
· 10K ⊆ 10K. And, since

∑
e∈Pu

∑ℓ
i=1 x̂

e
i · vei ∈ K, we have

that
∑

e∈Pu

∑ℓ
i=1 a

e
iv
e
i ∈ 11K.
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Proving (a). Let ε = 1
2 −

1
ℓ|E| > 0 be a constant, and let b = log(2 ℓ hε ). Construct zei , for

every e ∈ E and i ∈ [ℓ], by taking xei and setting to zero all the bits in the fractional part of

xei after the bth bit. Then, x̂e1 = ze1 +
(
1−

∑ℓ
i=1 z

e
i

)
, and x̂ei = zei for all i = 2, . . . , ℓ. Clearly,

for all i ≥ 2, x̂ei ∈ [0, 1], and the fractional part of x̂ei is at most b bits long. By definition,∑ℓ
i=1 x̂

e
i = x̂e1 +

∑ℓ
i=2 x̂

e
i = ze1 +

(
1−

∑ℓ
i=1 z

e
i

)
+
∑ℓ

i=2 z
e
i = 1. Furthermore, since

∑ℓ
i=2 x̂

e
i ≤ 1

and
∑ℓ

i=1 x̂
e
i = 1, we have that x̂e1 ∈ [0, 1]. By the construction of the zei s, the fractional part of

1−
∑ℓ

i=1 z
e
i =

∑ℓ
i=1 x

e
i −

∑ℓ
i=1 z

e
i is at most b bits long, and therefore, the fractional part of x̂e1 is

at most b bits long. Finally, for all u ∈ V ,∥∥∥∥∥∑
e∈Pu

ℓ∑
i=1

x̂ei · vei

∥∥∥∥∥
2

=

∥∥∥∥∥∑
e∈Pu

ℓ∑
i=1

x̂ei · vei −
∑
e∈Pu

ℓ∑
i=1

xei · vei

∥∥∥∥∥
2

=

∥∥∥∥∥∑
e∈Pu

ℓ∑
i=1

(x̂ei − xei ) · vei

∥∥∥∥∥
2

≤ h ·
(
ℓ · 2−b + (ℓ− 1) · 2−b

)
≤ ε,

where in the first equality we used the fact that
∑

e∈Pu

∑ℓ
i=1 x

e
i · vei = 0 and in the first inequality

we used that x̂e1−xe1 ≤ ℓ ·2−b. Therefore,
∑

e∈Pu

∑ℓ
i=1 x̂

e
i ·vei ∈ εBd2 . Since γd(K) ≥ 1− 1

ℓ|E| ≥
1
2+ε,

we have εBd2 ⊆ K (Proposition 1). So, overall,
∑

e∈Pu

∑ℓ
i=1 x̂

e
i · vei ∈ K.

Proving (b). Assume that for all e ∈ E and i ∈ [ℓ], the fractional part of yei is at most k bits
long. To round the kth-bits of {yei }i,e, we first construct a new tree T ′ = (V ′, E′) that has vectors
(instead of sets) associated to each edge, and then invoke Theorem 1 with T ′ and K. Intuitively,
the signs from the guarantee of Theorem 1 will tell us how to round (up or down) the kth-bit of
{yei }i,e, so that the resulting {ŷei }i,e (after rounding) have at most k− 1 bits in the fractional part,
and this rounding process doesn’t incur too much cost.

For each e ∈ E, let Ie = {i1, i2, . . . , i2q} ⊆ [ℓ] be the set of indices such that, for every j ∈ Ie,

the kth bit of the fractional part of yej is 1; the set Ie may be empty. Since
∑ℓ

i=1 y
e
i = 1, |Ie| must

be even. For every e ∈ E, we pair up consecutive indices in Ie, and corresponding to each pair we
define a vector. Formally, if Ie = ∅, set S̃e = {0}; otherwise, if Ie ̸= ∅, define the set of vectors

S̃e =

{
1

2

(
vei2p − vei2p+1

)
: for every i2p, i2p+1 ∈ Ie

}
.

For each e ∈ E, we have S̃e ⊆ Bd2 since
∥∥∥1
2

(
vei2p − vei2p+1

)∥∥∥
2
≤ 1

2

(∥∥∥vei2p∥∥∥2 + ∥∥∥vei2p+1

∥∥∥
2

)
≤ 1. Also,

by definition, |S̃e| ≤ |Ie|
2 ≤ ⌊

ℓ
2⌋.

To construct T ′, we start from T and replace every edge e ∈ E by a path of |S̃e| edges
e(1), e(2), . . . , e(|S̃

e|). For every edge e(i) ∈ E′, associate a unique vector u
(i)
e ∈ S̃e (so, there’s a

bijection between S̃e and {e(1), e(2), . . . , e(|S̃e|)}). Note that, since |S̃e| ≤ ⌊ ℓ2⌋, we have |E′| ≤
|E| · ⌊ ℓ2⌋. T

′ satisfies the conditions of Theorem 1: vectors associated with edges belong to the

sets S̃e, where S̃e ⊆ Bd2 . Applying Theorem 1 for T ′ and K (which also satisfies the conditions
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of Theorem 1), there exists a sign z
(i)
e ∈ {−1, 1} for every e ∈ E and i ∈ [|S̃e|] (i.e., a sign for every

edge in E′), such that, for every u ∈ V ,
∑

e∈Pu

∑|S̃e|
i=1 z

(i)
e u

(i)
e ∈ 5K where Pu is the set of edges on

the path from the root node of T to the node u in T .
Consider an edge e ∈ E. We round every yei to ŷei as follows: If Ie = ∅, then ŷei = yei for every

i ∈ [ℓ]. Otherwise, if Ie ̸= ∅, then for every vector u
(i)
e = 1

2(v
e
i2p
− vei2p+1

) ∈ S̃e, whose corresponding

sign is z
(i)
e , we set ŷei2p = yei2p + 2−k · z(i)e and ŷei2p+1

= yei2p+1
− 2−k · z(i)e ; all other j ∈ [ℓ] \ Ie are left

unupdated, ŷej = yej . This specifies a way to round each yej to ŷej .

It remains to show that our rounding procedure (i) preserves feasibility, (ii) sets the kth-bit of
the fractional part of ŷei to 0 for all e and i, and (iii) does not increase the vector sums of interest

by too much: for all u ∈ V ,
(∑

e∈Pu

∑ℓ
i=1 ŷ

e
i v
e
i −

∑
e∈Pu

∑ℓ
i=1 y

e
i v
e
i

)
∈ 2−k · 10K.

Recall that Ie is the set of all indices i where the kth bit of the fractional part of yei is 1. As per
the aforementioned rounding process, for all e ∈ E such that Ie = ∅, we have ŷei = yei for all i ∈ [ℓ],
hence (ii) holds. Otherwise, if Ie ̸= ∅, during the rounding we add or subtract 2−k from every yei2p
and yei2p+1

respectively, where i2p, i2p+1 ∈ Ie. This addition and subtraction ensures that the kth-

bits of yei2p and yei2p+1
are zero, additionally, for all j ∈ [ℓ]\Ie, ŷej = yej , i.e., the k

th bit remains zero;

(ii) follows. Since ŷei2p + ŷei2p+1
= yei2p + yei2p+1

, the equality
∑ℓ

i=1 ŷ
e
i =

∑ℓ
i=1 y

e
i = 1 is maintained.

Additionally, ŷej ≥ 0 for all e, j, the feasibility condition (i), also holds. Finally, for (iii), recall that

for all u ∈ V ,
∑

e∈Pu

∑|S̃e|
i=1 z

(i)
e u

(i)
e =

∑
e∈Pu

∑|S̃e|
i=1 z

(i)
e

1
2

(
vei2p − vei2p+1

)
∈ 5K, by Theorem 1. There-

fore, by our rounding process:
∑

e∈Pu

∑ℓ
i=1(ŷ

e
i − yei ) · vei ≤

∑
e∈Pu

∑|S̃e|
i=1 2

−kz
(i)
e

(
vei2p − vei2p+1

)
∈

2−k · 10K.

Given Theorem 2, our next task is to show that, given a rooted tree T as above, there exists a
distribution D over vectors (one from each edge set) such that for x ∼ D,

∑
e∈Pu

xe is subgaussian,
for every node u ∈ V .

Theorem 3. Let T = (V,E) be a rooted tree, where every e ∈ E has an associated set of vectors
Se ⊆ Bd2 satisfying 0 ∈ Conv(Se). Then there exists a distribution D supported on×e∈E Se such
that for x ∼ D,

∑
e∈Pu

xe is 22.11-subgaussian for every u ∈ V , where Pu is the set of edges of the
path from the root to the node u.

Finally, we prove that there exists an algorithm that, given sets of vectors one at a time, selects
a vector from each set such that the vector sum is O(1) subgaussian.

Theorem 4. For every T, k ∈ N, there exists an online algorithm that, given sets S1, S2, . . . , ST ⊆
Bd2 satisfying 1 ≤ |Si| ≤ k and 0 ∈ Conv(Si), chosen by an oblivious adversary and arriving one at
a time, selects a vector si ∈ Si from each arriving set Si such that, for every t ∈ [T ], the

∑t
i=1 si

is 23-subgaussian.

Proof. Let β = 22.11 = 23 − δ be the subgaussianity parameter in the guarantee of Theorem 3.

Additionally, let W be the smallest ε-net of the set S = ∪ki=1

(
×i

j=1 B
d
2

)
for ε = δ

2T ; here, S
represents the set of all subsets A ⊆ Bd2 satisfying 1 ≤ |A| ≤ k. From Proposition 2, we know

that W has size at most
∑k

i=1

(
3
ε

)di ≤ (3ε)d(k+1)
. We consider a complete and full |W|-ary tree

T = (V,E) of height T , where every internal node u ∈ V of T has |W| children, where each edge
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to a child-node is associated with an element of (or, set in) W. Let Ae be the set that corresponds
to edge e ∈ E in our construction, where, by the definition of W, Ae ⊆ Bd2 and 1 ≤ |Ae| ≤ k.
Theorem 3 implies the existence of distribution D over×e∈E Ae such that for any node u ∈ V ,∑

e∈Pu
ye is β-subgaussian for y ∼ D. At time t = 0, we sample an y ∼ D and start at the root node

of T . We will keep track of a location pt ∈ V , which at the beginning of time t will be a node at
depth t− 1. A time t, when the set St arrives, we map it to a set Yt ∈ argmin

Z∈W∩B|St|
2

∥Z − St∥2,
i.e., Yt is an element of W, with the same number of elements as St, closest to St. Yt corresponds
to some edge et incident to the current node pt (that is Aet = Yt). Let yt ∈ Yt be the vector
corresponding to edge et in the sample y from D (from time 0). Given yet , our algorithm selects
vector xt ∈ argminv∈St

∥v − yet∥2. Overall, at time t we: (i) map set St to a set Yt (or, equivalently,
edge et), (ii) use the sample y (the same across all times) to identify a vector yet ∈ Yt, and finally
(iii) map yet to a vector in xet ∈ St; xt is our output in time t. Finally, we update pt+1 to be the
child of pt along edge et.

Next, we prove that for all t ∈ [T ],
∑t

i=1 xt is 23-subgaussian. Since W is an ε-net of S =

∪ki=1

(
×i

j=1 B
d
2

)
, xt ∈ St (and therefore, xt ∈ S) and yet ∈ Yt (and therefore yet ∈ W), we have that

that ∥xt − yet∥2 ≤ ε. Furthermore, y ∼ D, and therefore
∑

e∈Pu
ye is β-subgaussian for all u ∈ V .

Noticing that e1, e2, . . . , et form a path from the root of T to some node u, we have that
∑t

i=1 yei
is β-subgaussian, or, equivalently,

∥∥∑t
i=1 yei

∥∥
ψ2,∞ ≤ β = 23− δ.

Towards proving subgaussianity for
∑t

i=1 xi we have∥∥∥∥∥
t∑
i=1

xi

∥∥∥∥∥
ψ2,∞

≤

∥∥∥∥∥
t∑
i=1

yei

∥∥∥∥∥
ψ2,∞

+

∥∥∥∥∥
t∑
i=1

xi − yei

∥∥∥∥∥
ψ2,∞

(triangle inequality)

≤ (23− δ) +

t∑
i=1

∥xi − yei∥ψ2,∞ (subgaussianity of
∑t

i=1 yei and triangle inequality)

≤ 23− δ + T · sup
d∈Sd−1

∥⟨xi − yei , d⟩∥ψ2
(definition of ∥.∥ψ2,∞)

= 23− δ + T · sup
d∈Sd−1

∥∥ ∥xi − yei∥2 · ∥d∥2 · cos(θ)
∥∥
ψ2

,

where θ is the random angle between the vectors xi−yei and d. cos(θ) is random variable supported
on [−1, 1], ∥xi − yei∥2 ∈ [0, ε] and ∥d∥2 = 1. Therefore, ∥xi − yei∥2 · ∥d∥2 · cos(θ) ∈ [−ε, ε]. From
the definition of ∥.∥ψ2

norm we therefore have that
∥∥ ∥xi − yei∥2 · ∥d∥2 · cos(θ)

∥∥
ψ2
≤ inf{t > 0 :

E[exp(ε2/t2)] ≤ 2} ≤ 2ε. Our upper bound on
∥∥∑t

i=1 xi
∥∥
ψ2,∞ becomes 23− δ + T · 2ε = 23.

3.2 Optimal online multicolor discrepancy

Here, we prove our main result for this section, an optimal algorithm for online multicolor discrep-
ancy. We start by giving an algorithm for weighted online vector balancing.

Lemma 1. For every α ∈
[
1
2 ,

2
3

]
and T ∈ N, there exists an online algorithm that, given vectors

v1, v2, . . . , vT ∈ Bd2 chosen by an oblivious adversary and arriving one at a time, assigns to each
vector vi a weight wi ∈ {1− α,−α}, such that, with probability at least 1− δ, for any δ ∈ (0, 1/2],
for all t ∈ [T ],

∥∥∑t
i=1wivi

∥∥
∞ ≤

√
log(T ) +

√
log(2/δ).
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Given an algorithm for weighted online vector balancing, we give an algorithm for online mul-
ticolor discrepancy: we construct a binary tree, where the leaves correspond to colors, and the
internal nodes execute the weighted online vector balancing algorithm. We note that this trick has
been used in the same context in previous work [Alweiss et al., 2021, Bansal et al., 2021].

Theorem 5. For every T ∈ N, there exists an online algorithm that, given vectors v1, v2, . . . , vT ∈
Bd2 chosen by an oblivious adversary and arriving one at a time, assigns each arriving vector vi to
one of n colors such that, with probability at least 1− δ, for any δ ∈ (0, 1/2], for all t ∈ [T ],

max
i,j∈[n]

∥∥∥∥∥∥∥
∑
v∈Ct

i

v −
∑
v∈Ct

j

v

∥∥∥∥∥∥∥
∞

≤ 6
(√

log(T ) +
√

log(2/δ)
)

where Cti is the set of all vectors that got assigned color i ∈ [n] up to time t ∈ [T ].

Proof. Let Aα be the algorithm of Lemma 1, for an α ∈ [1/2, 2/3]. We recursively construct a
binary tree with n leaves, corresponding to the n colors. For a tree with k > 1 leaves we add a
root node, as its left subtree recursively construct a tree with ⌈k/2⌉ leaves, and as its right subtree
recursively construct a tree with ⌊k/2⌋ leaves; for k = 1, we simply have a leaf.

Given vectors, one at a time, our algorithm for the online multicolor discrepancy problem decides
which set/color a vector gets by repeatedly running Aα for the online vector balancing problem at
each internal node of the tree. Specifically, at an internal node with k descendent leaves, we will
run a copy of Aα by setting α = ⌈k/2⌉/k, and by recursively passing the vectors that are assigned
1 − α (resp. −α) to the left (resp. right) subtree (until they reach the leaves). Note that for any
k ≥ 1, we have α = ⌈k/2⌉/k ∈ [1/2, 2/3]. Vectors are assigned the color of the leaf they reach.

Let pe be a weight for each edge e: the edge between the left (resp. right) child of an internal
node with k children has a weight pe = α = ⌈k/2⌉/k (resp. pe = 1− α). The weights on the edges
of an internal node is the “opposite” with respect to the weight of its children in the execution of
Aα. Intuitively, pe for an edge (u, v) is the expected fraction of vectors that go to node v, out of
the vectors that arrive at the parent node u.

There are n − 1 internal nodes in our tree. Let E be the event that all n − 1 executions of
Aα have maintained the discrepancy at most

√
log(T )+

√
log(2/δ) between the corresponding two

children nodes; E occurs with probability at least 1− (n− 1)δ. Let Ssum =
∑t

i=1 vi be the sum of
all vectors until time t, and let Su be the sum of all vectors that have passed through node u until
time t (so, Sr = Ssum for the root node r). Also, let πu = Πe∈Pupe, for a node u; intuitively, πu is
the (expected) fraction of vectors (out of {v1, . . . , vt}) that arrive at node u.

We will prove, via induction on ℓ, that conditioned on E , for all nodes u on level ℓ ≤ 0 we have

∥Su − πuS
sum∥∞ ≤ 3

(√
log(T ) +

√
log(2/δ)

)
.

For ℓ = 0 the statement trivially holds: for the root r at level zero we have ∥Sr − πrS
sum∥∞ =

0 ≤ 3
(√

log(T ) +
√

log(2/δ)
)
. Suppose that the statement holds for level ℓ, and let u be a node

in level ℓ+ 1, with parent node p (on level ℓ) and sibling node v (on level ℓ+ 1). Assume that u is
the left child of p (the other case is identical). We have that Sp = Su + Sv, and πu = πp · α. Also,
conditioned on E we have ∥(1− α)Su − αSv∥∞ ≤

√
log(T ) +

√
log(2/δ). So, overall:

∥Su − πuS
sum∥∞ = ∥(1− α)Su + αSu − απpS

sum∥∞
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≤ ∥(1− α)Su − αSv∥∞ + ∥αSv + αSu − απpS
sum∥∞ (triangle inequality)

= ∥(1− α)Su − αSv∥∞ + α ∥Sp − πpS
sum∥∞

≤
(√

log(T ) +
√
log(2/δ)

)
+

2

3
3
(√

log(T ) +
√
log(2/δ)

)
≤ 3

(√
log(T ) +

√
log(2/δ)

)
.

We will also prove, via induction on k, that for a node u that is the root of a subtree with
n − k + 1 leaves, πu = (n − k + 1) · 1n . For the root r (whose subtree has n = n − 1 + 1 leaves)
we have πr = 1 = n · 1

n . Consider a node u that is the left child of a node p, such that p
is the root of a subtree with k leaves. Then u is the root of a subtree with ⌈k/2⌉ leaves, and
πu = πp · α = k 1

n · ⌈k/2⌉/k = ⌈k/2⌉ · 1n ; the case that u is the right child of p is identical.
Finally, consider two arbitrary leaves v1 and v2. From the previous arguments we have that

πv1 = πv2 = 1
n , and

∥∥Svi − 1
n S

sum
∥∥
∞ ≤ 3

(√
log(T ) +

√
log(2/δ)

)
. Therefore, ∥Sv1 − Sv2∥∞ ≤

6
(√

log(T ) +
√
log(2/δ)

)
.

The lower bound for the online envy minimization problem in the next section implies that the
bound of Theorem 5 is optimal.

3.3 Optimal online envy minimization

Theorem 5 immediately implies, for the online envy minimization problem, a On(
√
log T ) upper

bound against an oblivious adversary.

Corollary 1. For any n ≥ 2, T ≥ 1 and δ ∈ (0, 1/2], there exists an online algorithm that, given a
sequence of T items with vi,t ∈ [0, 1] for all i ∈ [n] and t ∈ [T ] selected by an oblivious adversary
and arriving one at a time, allocates each item to an agent such that the envy between any pair of
agents i, j ∈ [n] satisfies, Envyti,j ∈ On(

√
log T ) with probability at least 1− 1

T c , for any constant c.

Here, we prove a lower bound of Ωn((log(T ))
r/2), for all r < 1, for the online envy minimization

problem, against an oblivious adversary. Our proof crucially uses the construction in the lower
bound of [Benadè et al., 2024b] for the online envy minimization problem, against an adaptive
adversary; for completeness, we include a proof of this result in Appendix B.3.

Theorem 6 (Theorem 2 of [Benadè et al., 2024b] restated). For any n ≥ 2, r < 1 and T ≥ 1,
there exists a set ST of instances with |ST | ≤ 2T such that for any online algorithm A, there exists
an instance I ∈ [0, 1]n·m in ST such that running algorithm A on the sequence of items 1, 2 . . . , T
described by I results in a maximum envy of at least EnvyT ∈ Ωn(T

r/2) at time T .

Our result is stated as follows.

Theorem 7. Fix any n ≥ 2, T ≥ 1, and r ∈ (0, 1). Let A be a (possibly randomized) online
algorithm. There exists an oblivious adversary that can select a sequence of T items such that the
allocation AT constructed by A has EnvyT ∈ Ωn((log(T ))

r/2) with probability at least 1/T .

Proof. By Yao’s minimax principle, we can, without loss of generality, focus on deterministic algo-
rithms A and an adversary that selects distributions over instances. We will construct a distribution
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D over instances, such that any deterministic algorithm A has EnvyT ∈ Ωn((log(T ))
r/2) with prob-

ability at least 1/T , where the randomness is over instances drawn from D. D is defined as follows:
for a fixed T , consider the set of instances Slog T described in Theorem 6, and select an instance
uniformly at random from this set. This gives us a sequence of log T items; to get to T items,
include T − log T items zero value for all the agents. Note that, by definition, Slog T contains an
instance I∗ for which algorithm A incurs an maximum envy of Ωn((log(T ))

r/2) at time log(T ), and
therefore at time T as well, since all items after step log T have zero value. D samples I∗ with
probability exactly 1/|Slog T |, which is at least 1/2log T = 1/T , by Theorem 6.

4 Performance Against an i.i.d. Adversary

In this section, we study an i.i.d. adversary. In this model, we show that online envy minimization
is easier than online multicolor discrepancy. We first prove a super-constant lower bound for the
online vector balancing problem (Theorem 8), which, naturally, implies a super-constant lower
bound for the online multicolor discrepancy problem. In Section 4.2 we give a simple algorithm for
online envy minimization and n agents. All missing proofs can be found in Appendix C.

4.1 Lower bounds for online vector balancing

In the following lower bound, we show that if for all t ∈ [T ], each coordinate of all the vectors vt are
i.i.d. drawn from the distribution U([−1, 1]), then the discrepancy at time T of any online algorithm

must be Ω
(√

log T
log log T

)
. Note that a drawn vector might not be a member of Bd2 . However, the

same lower bound will hold up to a factor of
√
d if each coordinate is drawn from U([−1/

√
d, 1/
√
d])

which ensures vt ∈ Bd2 ; we use U([−1, 1]) for the ease of exposition.

Theorem 8. Even for n = 2 colors, for any T ∈ N, any online algorithm A, and any d > 2,
when A is presented with a sequence of vectors v1, . . . , vT ∈ Rd, where vt,i ∼ U([−1, 1]) in an i.i.d.

fashion, the discrepancy of A is Ω
(√

log T
log log T

)
, with probability at least 1− 1/TΘ(1).

Proof. Let D = U([−1, 1]). We use the notation v ∼ Dd to denote a random vector v ∈ Rd each of
whose coordinates are drawn independently from D. The key observation is that, with sufficiently
high probability, there is a long enough sequence of input vectors that are orthogonal to the current
discrepancy vector; this leads to a large discrepancy at the end of this sequence. The following
claim will be used to formalize this idea.

Claim 1. There exists a constant c > 0 such that, for all δ > 0, and u ∈ Rd, we have Prv∼Dd [|⟨v, u⟩| ≤
δ ∥u∥2 and ∥v∥2 ∈ [1/2, 1]] ≥ cδ, where the constant c depends on d.

Proof. We can rewrite the probability of interest as

Pr
v∼Dd

[|⟨v, u⟩| ≤ δ ∥u∥2 and ∥v∥2 ∈ [1/2, 1]]

= Pr
v
[∥v∥2 ∈ [1/2, 1]] · Pr

v
[|⟨v, u⟩| ≤ δ ∥u∥2 | ∥v∥2 ∈ [1/2, 1]] (1)

We will show that Prv[∥v∥2 ∈ [1/2, 1]] ≥ c1 and Prv[|⟨v, u⟩| ≤ δ ∥u∥2 | ∥v∥2 ∈ [1/2, 1]] ≥ c2δ
where c1 and c2 are constants that depends on d. These two inequalities, along with Equation (1),
imply that Prv∼Dd [|⟨v, u⟩| ≤ δ ∥u∥2 and ∥v∥2 ∈ [1/2, 1]] ≥ c1c2δ = cδ, where c = c1c2.
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To prove that Prv[∥v∥2 ∈ [1/2, 1]] ≥ c1 we use the fact that the volume of the unit Euclidean ball

is given by vol(Bd2) = πd/2

Γ(d/2+1) where Γ represents the gamma function [Smith and Vamanamurthy,

1989]: Pr[∥v∥2 ∈ [1/2, 1]] =
vol(Bd

2)−vol(Bd
2)/2

d

2d
≥ vol(Bd

2)

2d+1 = c1, where c1 only depends on d.
It remains to prove that Prv[|⟨v, u⟩| ≤ δ ∥u∥2 | ∥v∥2 ∈ [1/2, 1]] ≥ c2δ for a constant c2 that

depends only on d. Conditioning on the event ∥u∥2 ∈ [1/2, 1], the distribution of the random
vector v ∼ Dd is centrally symmetric, i.e., the probability density of v only depends on ∥v∥2 and
not the direction of v. Define θ to be the random angle between u and v. All possible angles
θ ∈ [0, 2π] that u can make with v ∼ Dd are equally likely. Using this fact, we get

Pr
v∼Dd

[|⟨v, u⟩| ≤ δ ∥u∥2 | ∥v∥2 ∈ [1/2, 1]]

= Pr
v∼Dd

[|
√
d cos θ| ≤ δ | ∥v∥2 ∈ [1/2, 1]]

= Pr
v∼Dd

[| cos θ| ≤ δ√
d
| ∥v∥2 ∈ [1/2, 1]]

=
(π/2− arccos(δ/

√
d))

π/2
(θ ∈ [0, 2π] is uniformly distributed)

≥ 1− arccos(δ/
√
d)

π/2
=

2

π
√
d
· δ,

the penultimate inequality here follows from the Taylor expansion of arccos, which implies that
arccos(x) ≤ π/2− x for x ≥ 0. Setting c2 =

2
π
√
d
completes the proof of the claim.

Denote by dt :=
∑t

i=1 χivi, where χi ∈ {−1, 1} is the sign the algorithm picks, the discrepancy
at time t. We know that, ∥dt∥22 ≥ ∥dt−1∥22 + ∥vt∥

2
2 − 2|⟨dt−1, vt⟩|. For the case when ∥dt−1∥2 ≤

1
8δ ,

from Claim 1, we have that, with probability at least cδ, |⟨dt−1, vt⟩| ≤ 1/8 and ∥vt∥2 ∈ [1/2, 1].
Both these events imply that ∥dt∥22 ≥ ∥dt−1∥22 + 1/2− 2 · 1/8 = ∥dt−1∥22 + 1/4.

We now divide the time horizon from 1, . . . , T into T/τ contiguous chunks having τ timesteps
each. Consider a contiguous chunk spanning timesteps ts, . . . , te where te − ts = τ . Note that with
probability at least (cδ)τ all the incoming vectors in this chunk will satisfy the condition in Claim 1,
thereby implying that ∥dte∥

2
2 − ∥dts∥

2
2 ≥ τ/4, which in turn will imply that ∥dte∥2 ≥

√
τ/4.

We now set δ = 1/(c log T ) and τ = log T/(2 log log T ). Either at some point we have ∥dt−1∥2 >
1
8δ = (c log T )/8, in which case the lower bound holds. Otherwise ∥dt−1∥2 <

1
8δ for all the timesteps,

and with probability at least 1−(1− (cδ)τ )T/τ = 1−
(
1− (1/ log T )log T/(2 log log T )

)(2T log log T )/ log T
=

1 − 1/TΘ(1) at least one of the chunks will have all its vectors almost orthogonal to the current
discrepancy vector (i.e., all vectors will satisfy the condition in Claim 1), leading to a discrepancy

of at least
√
τ/4 = O

(√
log T

log log T

)
. This concludes the proof of Theorem 8.

4.2 Online envy minimization

In this section, we give an algorithm, Algorithm 1, for online envy minimization, against an i.i.d.
adversary. Algorithm 1 works in two phases. In phase 1, which lasts T (1) steps, it makes allocations
using the welfare maximization algorithm (“item j is allocated to the agent with the largest value”).
In Phase 2, at every step t the algorithm singles out the set of agents who have not received a large
number of items (within phase 2, up until t); among this set, it allocates item t to the agent who
is envied the least by agents in this set.
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ALGORITHM 1: Two-Phase Envy Minimization Algorithm

1 Set T (1) ← T − n(n−1)
2 ⌈log T

√
T ⌉, and T (2) ← n(n−1)

2 ⌈log T
√
T ⌉

2 Run welfare maximization (i.e., allocate item t to argmaxi∈[n] vi,t breaking ties randomly) for T (1)

steps

3 for t← T (1) + 1 to T do
4 Let wt

i be the number of items agent i has received in steps t′ > T (1).
5 Let S be the smallest (in terms of cardinality) subset of agents, such that ∀i ∈ S, j /∈ S

wt
i ≤ wt

j − ⌈log T
√
T ⌉.

6 Allocate item t to an agent i ∈ S who is envied the least, i.e., argmini∈S maxj∈S Envytj,i.

7 end

Theorem 9. For all positive integers c, Algorithm 1 has envy at most c+1 with probability at least
1−O(T−c/2).

Note that the O(·) hides constants that depend on the number of agents, but is independent of
the value distribution.

Proof. Fix a positive integer c, an arbitrary distribution D supported on [0, 1], and a time horizon
T . Throughout, we assume that T is sufficiently large, i.e., larger than some number T0 that
depends only on n and c, not on the distribution D. Let F denote the CDF of D.

A key observation is that we can analyze the algorithm using an equivalent, but more structured
method of sampling item values. Normally, at each time step t, the item values revealed to the
algorithm are sampled i.i.d. from D, independent of every decision made so far. Instead, we define
an equivalent experiment as follows. Let Gwelf = {gwelf1 , . . . , gwelf

T (1) } be a set of T (1) goods and, for

each agent i ∈ [n], let Gi = {gi1, . . . , giT (2)} be a set of T (2) goods.

1. Before the algorithm begins, nature samples values (V g
1 , . . . , V

g
n ) for each g ∈ Gwelf ∪

⋃
iG

i,

where each V g
i
i.i.d.∼ D.

2. During Phase 1 of the algorithm (welfare maximization), when the tth item arrives, it is revealed

to be item gwelft , with pre-sampled values (V
gwelf
t

1 , . . . , V
gwelf
t

n ).

3. During Phase 2 (lines 3-7 in Algorithm 1), suppose item t will be assigned to agent i who, at
this point, has received k items during phase 2 (|Ati \ Gwelf | = k). Then, item t is revealed to

be gik+1 with pre-sampled values (V
gik+1

1 , . . . , V
gik+1
n ).

Importantly, the allocation decision for item t does not depend on agents’ values for this item.

This ensures that the value vector (V
gik+1

1 , . . . , V
gik+1
n ) is independent of all decisions made by the

algorithm. Consequently, this modified experiment is statistically identical to the original setup in
terms of the envy of the final allocation.

A second useful modification is to work with item quantiles instead of item values. More
formally, instead of directly sampling V g

i , we will first sample a quantile Qg
i ∼ U [0, 1] and then set

V g
i = F−1(Qg

i ) where F
−1 is the generalized inverse of F . Throughout the remainder of this proof,

we condition on the probability 1 event that all Qg
i s are distinct. Note that for g ∈ Gwelf , allocating

item g to an agent with the highest quantile, i ∈ argmaxj Q
g
j , is equivalent to welfare maximization
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with random tie-breaking.7 Thus, we will assume these are coupled. Since all quantiles are distinct
by assumption, ties never occur, and this allocation is always well-defined.

No heavy envy-cycles. Our first high-level step will be to show that, with high probability,
no envy cycles with large weight exist during the execution of the algorithm.

Lemma 2. With probability 1 − O(T−c/2), at every time t ≥ T (1), there does not exist a cycle of
agents i1, . . . , ik, ik+1 = i1 such that Envyij ,ij+1

> c for all j = 1, . . . , k.

The proof of Lemma 2 crucially relies on the following concentration inequality (which, to the
best of our knowledge, is not known), that might be of independent interest.

Lemma 3. Fix positive integers L,K, and c, with L < K
4e . Let Y1, . . . , YK be i.i.d. draws from a

distribution supported on [0, 1]. Then, Pr
[∑

i≤K−L Yi −
∑

i>K−L Yi < −c
]
≤ 4 ·

(
2eL
K

)c+1
.

The proof of Lemma 2 also relies on two (relatively more straightforward) facts, Lemmas 4
and 5. The first lemma shows that the items allocated in phase 2 are relatively balanced among
the agents, up to additive ⌈log T

√
T ⌉ factors.

Lemma 4. Fix a time t. Let wti | be the number of items agent i has received in phase 2, i.e., wti =
|ATi \ Gwelf |. Let (wti1 , . . . , w

t
in
) be these numbers sorted from smallest to largest; so, wtij ≤ wtij+1

.

Then, for all j ≤ n− 1, wtij+1
≤ wtij + ⌈log T

√
T ⌉. Furthermore, wtin ≤ (n− 1)⌈log T

√
T ⌉, i.e., no

agent ever receives more than (n− 1)⌈log T
√
T ⌉ phase 2 items.

The second lemma is a sufficient condition for bounding the envy between two sets of values
and is reminiscent of approximate stochastic-dominance envy-freeness (SD-EF). The proof is based
on a generalization of Hall’s theorem.

Lemma 5. Given two sequences of values a1, . . . , ak and b1, . . . , bℓ where each ai, bi ∈ [0, 1]. Suppose
that, for each ai, | {i′|ai′ ≥ ai} | ≤ | {i′|bi′ ≥ ai} |+ c. Then,

∑
i ai ≤

∑
i bi + c.

Long phase 2 eliminates envy. Our second high-level step will be to show that if phase 2 is
sufficiently long, then with high probability, envy can be eliminated.

Lemma 6. With probability 1 − O(T−c/2) it is the case that for all agents i, j ∈ N and all time
steps t ≥ T (1), if |Ati \Gwelf | ≥ |Atj \Gwelf |+ ⌈log T

√
T ⌉, then Envyti,j ≤ c.

Putting it all together. With Lemmas 2 and 6 in hand, we are ready to prove the theorem.
Let Ht be a graph with nodes [n] where there is an edge (i, j) if Envyti,j > c. Condition on the

events in Lemma 2 and Lemma 6. These happen with probability 1− O(T−c/2). Then, Lemma 2
ensures that Ht is acyclic for all t, while Lemma 6 ensures that if |Ati \ Gwelf | ≤ |Atj \ Gwelf | +
⌈log T

√
T ⌉, then (j, i) /∈ Ht.

First, we prove that if an agent i received an item at some point during phase 2, then EnvyTj,i ≤
c+ 1, for all j ∈ N . To this end, suppose that i does indeed receive an item at some point during
phase 2, and let t be the last time step for which i received an item.

We first claim that Envyt−1
j,i ≤ c for all j ̸= i, i.e., i is a source node in Ht−1. Let S be the

set defined in Algorithm 1 for time step t, i.e., for all j ∈ S and j′ /∈ S, j has received at least
⌈log T

√
T ⌉ fewer items in phase 2, or |At−1

j \Gwelf | ≤ |At−1
j′ \G

welf | − ⌈log T
√
T ⌉. Note that i ∈ S

as they received item t, and for all j′ /∈ S, (j′, i) /∈ Ht−1, by Lemma 6. Then, consider Ht−1[S],

7We make this point, since unequal quantiles does not imply unequal values.
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the subgraph of Ht−1 that only containing the nodes S. Note that Ht−1[S] is acyclic, since Ht−1

is acyclic. Furthermore, by definition, source nodes in Ht−1[S] are envied by ≤ c by all agents in
S, while non-source nodes are envied by > c by at least one agent in S. Hence, i must be a source
node in Ht−1[S]. Together with the fact that there are no (j, i) edges for j /∈ S, we have that i is
a source node in Ht−1.

Now, since Envyt−1
j,i ≤ c, giving an item to i can increase envy by at most 1. Hence, Envytj,i ≤

c + 1. Furthermore, as i never received any more items after this time (t was defined as the last
item i received), envy toward i cannot increase. Hence, EnvyTj,i ≤ c+ 1, as needed.

Finally, let wti = |ATi \Gwelf | be the number of items allocated to agent i in phase 2. Note that
if wti > 0, by our previous argument, Envyj,i ≤ c+1 for all j ̸= i. So, if wti > 0 for all i ∈ N , we are
done. Suppose this is not the case. So, there exists an agent i such that wti = 0. Let i1, . . . , in be
an ordering of the agents sorted by wti , i.e., w

t
i1
≤ · · · ≤ wtin . The assumption that wti = 0 implies

that wti1 = 0. We claim that wti2 ≥ ⌈log T
√
T ⌉. Indeed, by induction, Lemma 4 ensures that for

all j ≥ 2, wtij ≤ wti2 + (j − 2)⌈log T
√
T ⌉. Hence,

∑n
j=1w

t
ij
≤ (n − 1) · wti2 +

(n−2)(n−1)
2 ⌈log T

√
T ⌉.

However, since this is time T ,
∑

j w
t
ij

= T (2) = n(n−1)
2 · ⌈log T

√
T ⌉. Together, these imply that

wti2 ≥ ⌈log T
√
T ⌉. Therefore, all agents other than i1 received at least one item during phase 2,

and hence are not envied by more than c+1. On the other hand, all agents j ̸= i1 received at least
⌈log T

√
T ⌉ items more than i1 in phase 2, and therefore, Envyj,i1 ≤ c ≤ c+ 1 as needed.
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A Missing Proofs from Section 2

A.1 Proof of Proposition 1

If K does not contain εBd2 , then there is p /∈ K such that p ∈ εBd2 ; therefore, since K is convex,
there must exist a hyperplane h that separates p from K, such that h ∩ (εBd2) ̸= ∅, and h does
not go through the origin. Denote by H+ ⊆ Rd the halfspace, created by h, that includes the
origin, and let H− be the other halfspace. Since H− is a halfspace that doesn’t contain the origin
we have that γd(H

−) < 1/2. Using the fact that the standard Gaussian distribution N (0, Id)
is centrally symmetric and that fact that the distance of the origin from h is strictly less than
ε, we can bound γd(H

+) < Pu∼N (0,1)[u ≤ ε] ≤ 1/2 + ε. This leads to a contradiction, since
γd(H

+), γd(H
−) < 1/2 + ε = γd(K), and K must lie entirely in either H+ or H−.

B Missing Proofs from Section 3

B.1 Proof of Theorem 3

We use the following proposition from [Kulkarni et al., 2024], which gives a specific symmetric
convex body, whose Gaussian measure is close to 1.

Proposition 4 ([Kulkarni et al., 2024]). For any d,N ∈ N, and δ > 0, let Kδ := {(y(1), . . . , y(N)) ∈
RNd : ∥Y ∥ψ2,∞ ≤ 2 + δ, where Y picks a vector uniformly at random from the set {y(1), . . . , y(N)}}
be a symmetric convex body. For any δ > 0, there exists a constant Cδ > 0 such that for all

d,N ∈ N, we have γNd(Kδ) ≥ 1− Cd
δ

N1+δ .

We will construct a tree T ′ = (V ′, E′) and then invoke Theorem 2 using T ′ and the convex body
defined in Proposition 4. To construct T ′ we start with the tree T = (V,E) and replace every e ∈ E
by a path of N edges e(1), e(2), . . . , e(N), for a suitable N ∈ N to be determined later in this proof;

hence, we have |E′| = N |E|. To every edge e(i) we associate a set S
(i)
e = {(0,0, . . . , v, . . . ,0) ∈

RNd : v ∈ Se} where an element/vector in S
(i)
e can be thought of as an N by d matrix, where

the ith row is a vector from Se, and all other rows are 0 vectors. This completes our construction

of T ′. Note that, 0 ∈ Conv(Se) implies that 0 ∈ Conv(S
(i)
e ), for all i ∈ [N ]. Additionally, by

Caratheodory’s theorem 0 ∈ Bd2 can be represented as a convex combination of at most d + 1
vectors in Se, which further implies that 0 ∈ BNd2 can also be represented as a convex combination

of at most ℓ = d + 1 vectors in S
(i)
e . We also consider the symmetric convex body Kδ (as defined

in Proposition 4) with N =
⌈(
(d+ 1)Cd

δ |E|
)1/δ⌉

for δ = 0.01. This particular choice of N gives us

γNd(Kδ) ≥ 1− Cd
δ

N1+δ ≥ 1− 1
(d+1)N |E| = 1− 1

ℓ·|E′| .

The tree T ′, along with the symmetric convex bodyKδ, satisfy the conditions of Theorem 2, and

therefore for all e ∈ E and i ∈ [N ] there exists s
(i)
e ∈ S

(i)
e such that for all u ∈ V ,

∑
e∈Pu

∑N
i=1 s

(i)
e =∑N

i=1

(∑
e∈Pu

s
(i)
e

)
∈ 11Kδ. From the definition of Kδ (for δ = 0.01), for v ∈ K, if we view v as an

N by d matrix, the random variable that picks a row of v uniformly at random is 2.01 subgaussian.

For a fixed i,
∑

e∈Pu
s
(i)
e is an element of S

(i)
e ⊆ RNd, i.e., an N by d matrix with all rows equal to

the 0 vector, except row i. And therefore,
∑N

i=1

(∑
e∈Pu

s
(i)
e

)
can be thought of as an N by dmatrix

whose ith row is exactly the ith row of
∑

e∈Pu
s
(i)
e . Therefore, since

∑N
i=1

(∑
e∈Pu

s
(i)
e

)
∈ 11K for all
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u ∈ V , the random variable
∑

e∈Pu
s
(j)
e (supported on RNd) where j ∼ U([N ]) is (11 · 2.01) = 22.11-

subgaussian. And, since all but the ith row of s
(i)
e are equal to the 0 vector, we also have that the

distribution D that samples j ∼ U([N ]) and then outputs the j-th row of s
(j)
e , for all e ∈ E, a

distribution supported on×e∈E Se, is also 22.11-subgaussian.

B.2 Proof of Lemma 1

Consider the algorithm of Theorem 4 where the set at time t is St = {(1 − α)vt,−αvt}, and let
st ∈ St be the choice of this algorithm. If st = (1 − α)vt, set wt = 1 − α; otherwise, set wt = −α.
Notice that the constant subgaussianity of

∑t
i=1 si implies, by Proposition 3, that with probability

at least 1 − δ/T , for every fixed t, we have
∥∥∑t

i=1 si
∥∥
2
< 23

√
log
(
2T
δ

)
. Thus, taking a union

bound over all t ∈ [T ], with probability at least 1 − δ, we have
∥∥∑t

i=1wivi
∥∥
∞ ≤

∥∥∑t
i=1wivi

∥∥
2
=∥∥∑t

i=1 si
∥∥
2
≤
√
log(2Tδ ) ≤

√
log(T ) +

√
log(2δ ), for all t ∈ [T ] simultaneously.

B.3 Proof of Theorem 6

In this section, we show that, for any n ≥ 2, r < 1 and T ≥ 1, in the online envy minimization
problem, there exists a set of instances ST , with |ST | ≤ 2T , such that, for any deterministic online
fair division algorithm A, there exists an instance I ∈ ST , such that running algorithm A on the
sequence of items 1, 2 . . . , T described by I results in EnvyT ∈ Ω((T/n)r/2). We first prove the
bound for n = 2, followed by the case of an arbitrary number of agents.

Lemma 7. For n = 2 and any r < 1, there exists a set of instances ST , with |ST | ≤ 2T , such
that, for any online fair division algorithm A, there exists an instance I ∈ ST , such that running
algorithm A on the sequence of items 1, 2 . . . , T described by I results in EnvyT ∈ Ω(T r/2).

Proof. We will describe a strategy for the adaptive adversary. The adversary will generate an
instance overtime, as the algorithm makes its choices. The set of instances ST is the set of all
possible instances; |ST | ≤ 2T since the algorithm makes a binary choice at each step.

Label the agents L and R, and let {v0 = 1, v1, v2, . . .} be a decreasing sequence of values
(specified later) satisfying vd − vd+1 < vd′ − vd′+1 for all d′ < d. The adversary keeps track of the
state of the game, and the current state defines its strategy for choosing the agents’ valuations for
the next item. The lower bound follows from the adversary strategy illustrated in Figure 1. Start
in state 0, which we will also refer to as L0 and R0, where the adversary sets the value of the
arriving item as (1, 1). To the left of state 0 are states labeled L1, L2, . . .; when in state Ld, the
next item that arrives has value (1, vd). To the right of state 0 are states labeled R1, R2, . . .; when
in state Rd the next item arrives with value (vd, 1). Whenever the algorithm allocates an item to
agent L (resp. R), which we will refer to as making an L (resp. R) step, the adversary moves one
state to the left (resp. right).

We construct the optimal allocation algorithm against this adversary, and show that for this
algorithm the envy at some time step t ∈ [T ] will be at least Ω(T r/2) for the given r < 1. This
immediately implies Lemma 7: if the envy is sufficiently large at any time step t the adversary can
guarantee the same envy at time T by making all future items valued at zero by both agents.

The intuition for the adversary strategy we have defined is that it forces the algorithm to avoid
entering state Ld or Rd for high d, as otherwise the envy of some agent will grow to v0+v1+ · · ·+vd,
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which will be large by our choice of {vd}. At the same time, if an L step is taken at state Ld,
followed by a later return to state Ld, the envy of R increases by at least vd− vd+1; we choose {vd}
so that this increase in envy is large enough to ensure that any algorithm which spends too many
time steps close to state 0 incurs large envy.

By the pigeonhole principle, either the states to the left or to the right of state 0 are visited
for at least half the time. Assume, without loss of generality, that our optimal algorithm spends
time T ′ = ⌈T/2⌉ in the “left” states (L0, L1, . . .), and that T ′ is even. We prove that the envy of
agent R grows large at some time step t. We ignore any time the algorithm spends in the states
Rd, d ≥ 1. To see why this is without loss of generality, consider first a cycle spent in the right
states that starts at R0 with an item allocated to R and eventually returns to R0. In such a cycle,
an equal number of items are allocated to both agents. All of these items have value 1 to agent R,
yielding a net effect of 0 on agent R’s envy. (We ignore agent L completely, as our analysis is of
the envy of agent R.) The other case is when the algorithm starts at R0 but does not return to
R0. This scenario can only occur once, which means that the algorithm has already taken T ′ steps
on the left side; the allocation of these items does not affect our proof.

Let 0 ≤ K ≤ T ′/2 be an integer and denote by OPT(K) the set of envy-minimizing allocation
algorithms that spend the T ′ steps in states L0, . . . , LK (and reach LK). Note that the algorithm
aims to minimize the maximum envy at any point in its execution. Let A∗(K) be the following
algorithm, starting at L0: Allocate the firstK items to agent L, thus arriving at state LK . Alternate
between allocating to agents R and L for the next T ′−2K items, thereby alternating between states
LK−1 and LK . Allocate the remaining K items to agent R. Our first result is that A∗(K) belongs
to OPT(K).

Lemma 8. A∗(K) ∈ OPT(K).

We analyze the envy of A∗(K) as a function of K before optimizing K. Agent R’s maximum
envy is realized at step T ′ −K, right before the sequence of R moves. EnvyT

′−K has two terms:
the envy accumulated to reach state LK , and the envy from alternating R and L moves between
states LK and LK−1, so

EnvyT
′−K =

K−1∑
d=0

vd +
T ′ − 2K

2
· (vK−1 − vK) . (2)

(1, 1)

0

(v1, 1)

R1

(v2, 1)

R2

· · ·(1, v1)

L1

(1, v2)

L2

· · ·

(1,−v3) (1,−v2) (1,−v1) (1,−1) (v1,−1) (v2,−1)

(−v3, 1)(−v2, 1)(−v1, 1)(−1, 1)(−1, v1)(−1, v2)

Figure 1: Adversary strategy for the two-agent lower bound. In state Ld, an item valued (1, vd)
arrives, while in state Rd, an item valued (vd, 1) arrives. The arrows indicate whether agent L or
agent R is given the item in each state. The arrows are labeled by the amount envy changes after
that item is allocated.
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Given r < 1, define vd := (d+ 1)r − dr. Notice that
∑K−1

d=0 vd = Kr. When K ≥
√

T ′/2 it follows

that
∑K−1

d=0 vd ≥ (T ′/2)r/2 ∈ Ω(T r/2), which is what we set out to prove. We limit the rest of the
analysis to the case where K ≤

√
T ′/2.

Lemma 9. Let K ≤
√
T ′/2 and define vd := (d+1)r−dr for r < 1. Then vK−1−vK ≥ r(1−r)Kr−2.

Applying Lemma 9 to (2) and distributing terms yields

EnvyT
′−K ≥ Kr − r(1− r)Kr−1 +

T ′

2
r(1− r)Kr−2 ≥ 1

2

(
Kr + T ′r(1− r)Kr−2

)
, (3)

where the second inequality uses the fact that r(1− r) ≤ 1/4 < 1/2 and assumes K > 1 (otherwise
the envy would be linear in T ′). To optimize K, noting that the second derivative of the above
bound is positive for K ≤

√
T ′/2, we find the critical point:

∂

∂K

(
Kr + T ′r(1− r)Kr−2

)
= rKr−1 − T ′r(1− r)(2− r)Kr−3 = 0 =⇒ K =

√
T ′(1− r)(2− r).

Defining C1 :=
√
(1− r)(2− r) and substitute into (3) to obtain

EnvyT
′−K ≥ 1

2

(
Cr
1(T

′)r/2 + T ′r(1− r)Cr−2
1 (T ′)r/2−1

)
∈ Ω(T r/2), (4)

completing the proof.

The extension to n agents follows from the same set of instances for agents L, R, letting all
other agents value every item at zero.

C Missing Proofs from Section 4

C.1 Proof of Lemma 2

We first claim that a sufficient condition for avoiding cycles at time step t is that vj(A
t
i) ≤ vi(A

t
i)+c

for all agents i ̸= j. Indeed, consider a cycle of agents i1, . . . , ik, ik+1 = i1. Then, we have

k∑
j=1

Envyij ,ij+1
=

k∑
j=1

vij (Aij+1)− vij (Aij )

=

k∑
j=1

vij (Aij+1)−
k∑
j=1

vij (Aij )

=

k∑
j=1

vij (Aij+1)−
k∑
j=1

vij+1(Aij+1)

=

k∑
j=1

vij (Aij+1)− vij+1(Aij+1)

≤ k · c.

Thus, for at least one pair, Envytij ,ij+1
≤ c, preventing a cycle from forming.
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Now, fix two agents i ̸= j. We aim to show that

Pr[∀t ≥ T (1), vi(A
t
i)− vj(A

t
i) < −c] ≤ 4 ·

(
8en2 log T√

T

)c+1

.

Applying a union bound over the n(n− 1) pairs of i and j yields the lemma statement.
Without loss of generality, we relabel i = 1 and j = 2. Define Zt := v1(A

t
1) − v2(A

t
1) as the

difference in values at time t. Our goal is to show that Zt ≥ −c for all t ≥ T (1) with high probability.
We decompose At1 into the portion received during each phase:

v1(A
t
1)− v2(A

t
1) = v1(A

t
1 ∩Gwelf )− v2(A

t
1 ∩Gwelf ) + v1(A

t
1 \Gwelf )− v2(A

t
1 \Gwelf ).

Since t ≥ T (1), we can express

v1(A
t
1 ∩Gwelf )− v2(A

t
1 ∩Gwelf ) =

T (1)∑
j=1

(
V
gwelf
j

1 − V
gwelf
j

2

)
· I[gwelfj ∈ At1].

Define

Xj =

(
V
gwelf
j

2 − V
gwelf
j

1

)
· I[gwelfj ∈ At1].

Now, consider At1 \Gwelf . By Lemma 4, we have that

|At1 \Gwelf | ≤ (n− 1) · ⌈log T
√
T ⌉.

Thus, we have At1 \ Gwelf ⊆ {g11, . . . , g1(n−1)·⌈log T
√
T ⌉} (recall our way of sampling an instance).

Furthermore, we can lower-bound

v1(A
t
1 \Gwelf )− v2(A

t
1 \Gwelf ) ≥ −

(n−1)·⌈log T
√
T ⌉∑

j=1

(V
gij
2 − V

gij
1 )+

where (s)+ = max(s, 0). That is, in this lower bound we only count items where agent 2 had a

higher value than agent 1. Let Yj = (V
gij
1 − V

gij
2 )+.

Since the above bounds are independent of t, it suffices to show that

T (1)∑
j=1

Xj −
(n−1)⌈log T

√
T ⌉∑

j=1

Yj ≥ −c

with high probability, ensuring the bound holds for all remaining t > T (1).
If Xj stochastically dominated Yj , then a straightforward application of Lemma 3 would imply

the statement. Unfortunately, this is not the case. So, instead, we define the following random
variables, X ′

j , that are large sums of Xj random variables, and such that the stochastic dominance

we want is true. For each j ≤ ⌊T (1)/(2n)⌋, let X ′
j =

∑j·2n
j′=(j−1)·2n+1Xj , i.e., each X ′

j is the sum of
a distinct set of 2n Xjs. We will show that

⌊T (1)/(2n)⌋∑
j=1

X ′
j −

(n−1)⌈log T
√
T ⌉∑

j=1

Yj ≥ −c
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with high probability. Specifically, we will show that each X ′
j first-order stochastically dominates

each Yj . Then, by applying Lemma 3 we have

Pr

⌊T (1)/(2n)⌋∑
j=1

X ′
j −

(n−1)⌈log T
√
T ⌉∑

j=1

Yj < −c

 ≤ 4 ·
(
2eL

K

)c+1

,

where K = ⌊T−
n(n−1)

2
⌈log T

√
T ⌉

2n ⌋+(n− 1)⌈log T
√
T ⌉ ≥ T

2n (as long as ⌈log T
√
T ⌉(3n4 −

3
4) ≥ 1, which

holds for T ≥ 4), and L = (n− 1)⌈log T
√
T ⌉ ≤ 2n log T

√
T . Note that, indeed, KL ≥

√
T

4n2 log T
≥ 4e,

for T ∈ Ω(n6). So, overall:

Pr

⌊T (1)/(2n)⌋∑
j=1

X ′
j −

(n−1)⌈log T
√
T ⌉∑

j=1

Yj < −c

 ≤ 4 ·
(
8en2 log T√

T

)c+1

.

To analyze this probability, we characterize the distributions of eachXj , X
′
j , and Yj . We will use

X, X ′, and Y as random variables with the same distribution as each Xj , X
′
j , and Yj , respectively.

Recall, a way to sample X is to sample n values V1, . . . , Vn
i.i.d.∼ D, and if V1 is the largest (breaking

ties randomly), set X = V1 − V2, otherwise set X = 0. To define X ′ we sum 2n draws from X.

Finally, a way to sample Y is to sample n values V1, . . . , Vn
i.i.d.∼ D and if V1 ≥ V2 (breaking ties

randomly), set Y = V1 − V2, otherwise set Y = 0.
All of these can be understood using distributions induced by the difference of order statistics.

More formally, let D(k)−(ℓ) be the distribution obtained by drawing V1, . . . , Vn
i.i.d.∼ D, sorting them

as V (1) ≤ · · · ≤ V (n), and returning V (k) − V (ℓ).

1. The distribution of X corresponds to selecting distinct indices i1, i2 uniformly from [n], and
if i1 = n, sampling from D(n)−(i2); otherwise, outputting 0.

2. The distribution of Y corresponds to selecting distinct indices i1, i2 uniformly from [n], and
if i1 > i2, sample from D(i1)−(i2); otherwise, outputting 0.

The distribution of X ′ can be described as follows:

1. Sampling 2n pairs (ij1, i
j
2)j=1,...,2n, where ij1 ̸= ij2 for all j, from [n], uniformly at random.

2. For each pair where ij1 = n, draw a value from D(n)−(ij2)

3. Output the sum of these values (or output 0 if no ij1 = n).

It remains to show that X ′ first-order stochastically dominates Y . To this end, note that if
i′1 ≥ i1 and i′2 ≤ i2, then D(i′1)−(i′2) first-order stochastically dominates D(i1)−(i2). We now present
a sequence of distributions, each distribution stochastically dominating the previous distribution
in the sequence, beginning with Y and ending with X ′.

Distribution 1. We begin with the distribution of Y . Recall that this can be described as: draw
a distinct pair i1, i2 ∈ [n]. If i1 > i2, sample from D(i1)−(i2); otherwise, output 0. Since each
ordering of i1 and i2 are equally likely, an equivalent description is draw a distinct pair i1, i2 ∈ [n].
With probability 1/2, output 0, and otherwise, sample from D(max(i1,i2))−(min(i1,i2)).
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Distribution 2. With probability 1/2, output 0. Otherwise, sample a distinct pair i1, i2 from [n]
and output D(n)−(min(i2,i′2)). This stochastically dominates distribution 1 because n ≥ max(i1, i2).

Distribution 3. With probability 1/2, output 0. Otherwise, sample two (not necessarily distinct)
values i2, i

′
2 uniformly from [n − 1] and output D(n)−(min(i2,i′2)). To show that this stochastically

dominates Distribution 2, observe that taking the minimum of a distinct pair from [n] stochas-
tically dominates taking the minimum of a (not necessarily distinct) pair from [n − 1], so this
only increases the likelihood of drawing from a “better” distribution. Specifically, the probability
that min(i1, i2) ≥ k, where i1, i2 are a distinct pair from [n], is n−k+1

n · n−kn−1 . The probability

that min(i1, i2) ≥ k, where i1, i2 are a (possibly non-distinct) pair from [n − 1], is
(
n−k
n−1

)2
. Since

n−k+1
n

n−k
n−1 >

(
n−k
n−1

)2
, the former probability is greater. As this holds for all k, stochastic domi-

nance is implied.

Distribution 4. Draw 2n pairs (ij1, i
j
2)j=1,...,2n, where numbers in a pair are distinct, and ijℓ is

drawn from [n]. If exactly zero or exactly one pairs have ij1 = n, output 0. Otherwise, let (i1, i2)
and (i′1, i

′
2) be the first two pairs with i1 = i′1 = n, and draw from D(n)−(min(i2,i′2)). Note that

conditioned on i1 = n, i2 is just a uniform draw from [n− 1]. So to establish stochastic dominance
over Distribution 3, we simply need to show that the probability of at least two pairs with ij1 = n
is at least 1/2. The number of such pairs follows a Bin(2n, 1/n) distribution, which has mean
2n/n = 2. Furthermore, it is known that the median is at least the floor of the mean [Kaas and
Buhrman, 1980], thus, the probability of having at least two pairs is at least 1/2, as needed.

Distribution 5. Next, we consider a distribution that only keeps the “best” pair. That is, we
draw 2n pairs (ij1, i

j
2)j=1,...,2n as in Distribution 4, and among those where ij1 = n, select the minimal

ij2, and output D(n)−(ij2) (or 0 if no such pair exists). This stochastically dominates Distribution 4

because, in the cases when there are at least two pairs with ij1 = n, we are taking the minimum
over even more values; and we are now potentially achieving a positive value even when there is
only one pair with ij1 = n.

Distribution 6. Draw 2n pairs (ij1, i
j
2)j=1,...,2n as in Distribution 5, and for each pair where

ij1 = n, draw a value from D(n)−(ij2), and output the sum of these values (or output 0 if no ij1 = n).
Note that we are only including more pairs than Distribution 5, so this stochastically dominates it.
Furthermore, this is exactly the distribution of X ′.

This completes the proof.

C.2 Proof of Lemma 3

A key observation is that, since the Yi’s are i.i.d. draws, by symmetry, the probability of the event
we care about is equal to

Pr

[∑
i/∈S

Yi −
∑
i∈S

Yi < −c

]
,
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where S ⊆ [K] is a randomly sampled set of indices of size L. Condition on the set of draws
Y1, . . . , YK having arbitrary values y1, . . . , yK , and consider the randomness over the set S. By
symmetry, it is without loss of generality that y1 ≥ · · · ≥ yK .

Now, by Lemma 5, a sufficient condition for
∑

i/∈S yi +
∑

i∈S yi ≥ −c is that for all j ∈ S,

|{j′ ∈ S | yj′ ≥ yj}| ≤ |{j′ /∈ S | yj′ ≥ yj}|+ c.

A sufficient condition for this is that for all j ≤ K,

|[j] ∩ S| ≤ |[j] \ S|+ c,

i.e., in any prefix there are the number of indices in S never exceeds those outside of S by more
than c. Finally, observe that |[j] \S| = j − |[j]∩S|, we can again reformulate this as for all j ≤ K,

|[j] ∩ S| ≤ j + c

2
.

Let Ej be the event that |[j]∩S| > j+c
2 . We will upper bound each Pr[Ej ] and then union bound

over all j.
Let Zi := I[i ∈ S], so |[j]∩S| =

∑j
i=1 Zi. The Zis are not independent, but they are negatively

associated, and thus, traditional Chernoff bounds apply [Dubhashi and Panconesi, 2009]. We have
that E[Zi] = L

K for each i. For j ≤ c, note that Pr[Ej ] = 0 because
∑j

i=1 Zi ≤ j ≤ j+c
2 . For

j ≥ c+1, note that E[
∑j

i=1 Zi] is precisely µ := j·L
K . We would like to upper bound the probability

that
∑j

i=1 Zi exceeds j+c
2 . Since the Zis are integral, it suffices to bound the probability that∑j

i=1 Zi exceeds
⌈
j+c
2

⌉
. Let δ be such that

⌈
j+c
2

⌉
= (1 + δ)µ. Note that since L/K ≤ 2, µ ≤ j/2,

and therefore, δ > 0. Furthermore,

1 + δ =
j + c

2µ
≥ j

2µ
=

K

2L
.

Using the Chernoff bound, we have:

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ
≤
(

e

(1 + δ)

)(1+δ)µ

≤
(
2eL

K

)⌈ j+c
2 ⌉

.

Applying a union bound over all j, we have that

Pr

 ⋃
j≤K
Ej
 ≤ K∑

j=0

Pr[Ej ]

=

K∑
j=c+1

Pr[Ej ]

≤
K∑

j=c+1

(
2eL

K

)⌈ j+c
2 ⌉

≤
∞∑

j=c+1

(
2eL

K

)⌈ j+c
2 ⌉
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≤
∞∑
j=0

(
2eL

K

)⌈ j+2c+1
2 ⌉

≤
∞∑
j=0

(
2eL

K

)⌈ 2j+2c+1
2 ⌉

+

(
2eL

K

)⌈ 2j+1+2c+1
2 ⌉

=
∞∑
j=0

2

(
2eL

K

)j+c+1

= 2

(
2eL

K

)c+1

·
∞∑
j=0

(
2eL

K

)j
= 2

(
2eL

K

)c+1

· 1

1− 2eL
K

≤ 4

(
2eL

K

)c+1

,

where the last two transitions use the fact that 2eL
K ≤ 1/2.

C.3 Proof of Lemma 4

We will prove this by induction on the time steps. Note that at T (1), no phase 2 items have been
given out, so wti = 0 for all i, satisfying the lemma statement. Now suppose this is true at some
fixed time t, and suppose the current sorted vector is (wti1 , . . . , w

t
in
). Importantly, the sorted vector

after the item has been given can be obtained by incrementing one entry. Specifically, the sorted
vector will become (wti1 , . . . , w

t
ij
+1, . . . wtin) where ij is the maximal j such that the receiving agent

had wtij items. If j = 1 (the item was given to the agent with the fewest items), the inductive

hypothesis clearly holds. We simply need to show that wtij−1
≥ wtij − ⌈log T

√
T ⌉. Importantly, the

agent receiving the item i must have i ∈ S, as defined on line 5. Thus {i1, . . . , ij} ⊆ S because each
of these agents have currently received at most ij items. Furthermore, wtij−1

≥ wtij −⌈log T
√
T ⌉, as

otherwise {i1, . . . , ij−1} satisfies the condition of line 5, and is strictly smaller in cardinality than
the chosen S. Therefore, even after this addition wtij + 1− wtij−1

≤ ⌈log T
√
T ⌉.

To establish the general upper bound of wtin ≤ (n − 1)⌈log T
√
T ⌉, suppose for a contradiction

there was a time step t > T (1) where win > (n−1)⌈log T
√
T ⌉. Then, by a straightforward induction

over j,
win+1−j > (n− j) · ⌈log T

√
T ⌉,

for all 1 ≤ j ≤ n. Summing over all agents implies that phase 2 must last > n(n−1)
2 · ⌈log T

√
T ⌉.

This is a contradiction.

C.4 Proof of Lemma 5

Fix values a1, . . . , ak and b1, . . . , bℓ. Consider a bipartite graph with nodes [k] on the left side and
nodes [ℓ] on the right. We will have an edge (i, j) precisely when ai ≤ bj . We would like to show
that there is a matching in this graph of size at least k − c.
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We first show that this is sufficient to imply the lemma. LetML,MR be the set of matched nodes
and UL, UR be the set of unmatched nodes on the left and right. We have that

∑
i∈ML

ai ≤
∑

i∈MR
bi

by definition of the matching. Furthermore, |UL| ≤ c, so
∑

i∈Ul
ai ≤ c. Putting this together, we

have ∑
i

ai =
∑
i∈ML

ai +
∑
i∈UL

ai ≤
∑
i∈MR

bi + c ≤
∑
i

bi + c.

To prove the existence of such a matching, it is sufficient so show that for all sets S ⊆ [k],
|N(S)| ≥ |S| − c where N(S) is the neighborhood of S, i.e., all nodes in [ℓ] adjacent to at least
one node in S [Lovász and Plummer, 2009]. Fix such an S. Let i ∈ argmini′∈S ai′ . Note that
S ⊆ {i′ | ai′ ≥ ai} and N(S) ⊃ {i′ | bi′ ≥ ai}, as all such nodes are adjacent to ai. Thus, by the
lemma condition |S| ≤ |N(S)|+ c, as needed.

C.5 Proof of Lemma 6

Fix agents i ̸= j. We will prove the statement is true for this pair of agents and then union bound
over the at most n(n − 1) pairs to yield the lemma statement. Without loss of generality, we will
relabel i as agent 1 and j as agent 2. We will also assume T is sufficiently large such that T (1) ≥ T/2
and log T

√
T > 1. The latter implies that ⌈log T

√
T ⌉ ≤ 2 log T

√
T .

For each good g, let Igi be the indicator variable denoting that agent i has the highest quantile
for item g. Given these random variables, agent 1’s bundle at time t ≥ T (1) takes on the form

At1 = {g ∈ Gwelf | Ig1 = 1} ∪ {g11, . . . g1k}

for some value k and agent 2’s final bundle is

A2 = {g ∈ Gwelf | Ig2 = 1} ∪ {g22, . . . , g2ℓ }

for some value ℓ. The conditions of the lemma statement hold precisely when k ≥ ℓ+ ⌈log T
√
T ⌉.

Furthermore, note that by Lemma 4, we only need to consider k ≤ (n− 1) · ⌈log T
√
T ⌉.

For each q ∈ [0, 1] let

X0
q =

∑
g∈Gwelf

I[Qg
1 ≥ q] · Ig1 ,

i.e., the number of items agent 1 received during welfare maximization for which they had quantile
at least q. Furthermore, for an integer k

Xk
q = X0

q +

k∑
j=1

I[Qg1j ≥ q],

which counts the number of items 1 has quantile ≥ q including the first k items they receive in
phase 2.

Similarly, we will define Y k
q analogously for bundle 2. However, note that we still consider agent

1’s bundle. More formally,

Y 0
q =

∑
g∈Gwelf

I[Qg
1 ≥ q] · Ig2 and Y k

q = Y 0
q +

k∑
j=1

I[Qg2j ≥ q],
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Suppose |At1 \Gwelf | = k and |At2 \Gwelf | = ℓ. These random variables are useful because to show
Envyt1,2 ≤ c, by Lemma 5, it suffices to show that ∀q ∈ [0, 1], Xk

q ≥ Y ℓ
q + c. Indeed, for any g ∈ At2,

let q = min
g′∈At

1∪At
2:V

g′
1 ≥V g

1

V g′

1 . Then Xk
q and Y ℓ

q exactly count the number of items agent 1 values

at least as much as g in At1 and At2, respectively.
To prove it is true for all time steps t handled by the lemma condition, it suffices to show

∀q ∈ [0, 1], Xk
q + c ≥ Y ℓ

q for all k ≤ (n − 1) · ⌈log T
√
T ⌉ and ℓ ≤ k − ⌈log T

√
T ⌉. In fact, since

both Xk
q and Y ℓ

q are nondecreasing in ℓ and k, it suffices to prove it for k = ℓ+ ⌈log T
√
T ⌉. More

concisely, our goal is to show

Pr[∀q ∈ [0, 1],∀ℓ ∈ [(n− 2) · ⌈log T
√
T ⌉], Xℓ+⌈log T

√
T ⌉

q + c ≥ Y ℓ
q ] ≥ 1−O(T−c/2).

Equivalently, we show

Pr[∃q ∈ [0, 1],∃ℓ ∈ [(n− 2) · ⌈log T
√
T ⌉], Y ℓ

q −Xℓ+⌈log T
√
T ⌉

q > c] ≤ O(T−c/2).

To this end, we partition the unit interval into four subintervals. For each subinterval [q1, q2], we
show

Pr[∃q ∈ [q1, q2],∃ℓ ∈ [(n− 2) · ⌈log T
√
T ⌉], Y ℓ

q −Xℓ+⌈log T
√
T ⌉

q > c] ≤ O(T−c/2). (5)

and then apply a union bound over these four bounds to extend it to the entire interval. Each
subinterval requires a different proof strategy. Note that by monotonicity of these variables showing
Y ℓ
q1 −Xk

q2 > c implies Y ℓ′
q −Xk′

q > c for all q ∈ [q1, q2], ℓ
′ ≥ ℓ and k′ ≤ k.

Before analyzing each subinterval, we introduce notation and derive bounds that will be useful
throughout.

For each item g ∈ Gwelf , define

Zgi = Qg
1 · I[I

g
i = 1]− I[Igi = 0].

That is, Zgi equals Qg
1 if Igi = 1 and −1 otherwise. These random variables give an alternate way

to more directly compute X0
q and Y 0

q as :

X0
q =

∑
g∈Gwelf

I[Zg1 ≥ q] and Y 0
q =

∑
g∈Gwelf

I[Zg2 ≥ q].

Finally, it will be helpful to understand the distribution of each Zgi . Fix a good g. Define the
CDFs F 1 and F 2 of Zg1 and Zg2 , respectively. For each i, by symmetry, Zgi = −1 with probability
1 − 1/n, as each agent only receives an item during quantile maximization with probability 1/n.
With remaining probability, it matches the distribution of Qg

1 | I
g
i = 1, the value of Qg

1 conditioned
on good g going to agent i.

For i = 1, the conditional Qg
1 | I

g
1 = 1 follows a Beta[n, 1] distribution, as it is the distribution

of a uniform distribution conditional on it being the maximum of n draws. In particular, the
conditional CDF is xn. Hence, for x ∈ [0, 1],

F 1(x) =
n− 1 + xn

n
.

For i = 2, the distribution Qg
1 | I

g
2 = 1 is equivalent a U [0, 1] conditioned on it not being the

maximum of n draws. Note that not being the maximum of n draws occurs with with probability
(n− 1)/n. Thus, whatever this distribution D is, it must satisfy

1/n · Beta[n, 1] + (n− 1)/n · D = U [0, 1]
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in the sense that an equivalent way of sampling from U [0, 1] is, with probability 1/n sample from
Beta[n, 1], and with remaining probability (n− 1)/n sample from D. Importantly, we can use this
to solve for the CDF: n

n−1(x−
xn

n ). Hence, the unconditional CDF is

F 2(x) =
n− 1

n
+

1

n− 1

(
x− xn

n

)
.

It will also be helpful to obtain more usable bounds on the probability Zgi takes on values very
close to 1, i.e., bounds on 1− F i(1− ε) for small values of ε. We have that,

1− F 1(1− ε) =
1− (1− ε)n

n
≥

1− 1
1+ε·n
n

=
ε·n

1+ε·n
n

=
ε

1 + ε · n
.

Hence, for ε ≤ 1/n,

1− F 1(1− ε) ≥ ε

2
.

For F 2, a necessary condition for Zg2 ≥ 1 − ε is Qg
1 ≥ 1 − ε and Ig2 = 1. The latter implies that

Qg
2 ≥ Qg

1, and thus, Qg
2 ≥ 1 − ε as well. The probability that both Qg

1 ≥ 1 − ε and Qg
2 ≥ 1 − ε is

ε2. Hence,
1− F 2(1− ε) ≤ ε2.

Finally, we will upper bound the probability that Zg1 is small (but not −1). More specifically,
Pr[Zg1 ∈ [0, ε]] ≤ εn. Indeed, a necessary condition for this to occur is that Qg

1 ≤ ε and Qg
i ≤ Qg

1

for all i ̸= 1. This implies Qg
i ≤ ε must hold for all i. This only occurs with probability εn. For

our purposes, it will be sufficient to use the weaker bound

Pr[Zg1 ∈ [0, ε]] ≤ ε2. (6)

With these facts in hand, we now analyze each subinterval.

Part 1:
[
0, 8n

2 log T√
T

]
. Let q = 8n2 log T√

T
, and fix an arbitrary ℓ ∈ [(n−2) ·⌈log T

√
T ⌉]. We will show

that Pr[Y ℓ
q − X

ℓ+⌈log T
√
T ⌉

q > c] ≤ TΩ(log(T )). Union bounding over the (n − 2) cot⌈log T
√
T ⌉ + 1

choices of ℓ yields the desired result.
For each good g ∈ Gwelf , let W g ∈ {−1, 0, 1} be a random variable such that W g = −1

if Zg1 ≥ q (g counts toward X
ℓ+⌈log T

√
T ⌉

q ), 1 if Zgi ≥ 0 (g counts toward Y ℓ
0 ) and 0 otherwise.

Furthermore, for g ∈ {g11, . . . , g1ℓ+⌈log T
√
T ⌉}, let W g ∈ {−1, 0} be such that W g = −1 if Qg

1 ≥ q

(g counts toward X
ℓ+⌈log T

√
T ⌉

q ). Finally, for g ∈ {g21, . . . , g1ℓ }, let W g = 1 denoting that g counts

toward Y ℓ
q . Importantly, we have

∑
gW

g = X
ℓ+⌈log T

√
T ⌉

q − Y ℓ
q . We will prove that

∑
gW

g ≤ 0
with high probability using Hoeffding’s inequality.

Let us now consider E[
∑

gW
g]. For g ∈ G1, E[W g] = −(1 − q), because it is −1 as long as

Qg
1 ≥ q. For g ∈ G2, W g = 1 deterministically, so E[W g] = 1 as well. For the remaining g ∈ Gwelf ,

note that g is given to each of agents 1 and 2 with probability 1/n each. However, with probability
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at most q2, g is given to agent 1 with Qg
1 ≤ q by (6). Hence, E[W g] ≤ q2. Furthermore, there are

at most T (1) ≤ T such goods g
Putting these together, we have that

E

[∑
g

W g

]
≤ −(ℓ+ ⌈log T

√
T ⌉) · (1− q) + ℓ+ T · q2

= −⌈log T
√
T ⌉(1− q) + ℓ · q + Tq2.

≤ −⌈log T
√
T ⌉(1− q) + (n− 2) · ⌈log T

√
T ⌉ · q + Tq2

≤ −⌈log T
√
T ⌉(1− (n− 2) · q) + Tq2

= −⌈log T
√
T ⌉(1− (n− 2) · q) + 8n2 log T

√
T · q

≤ −⌈log T
√
T ⌉(1− (n− 2) · q) + 8n2⌈log T

√
T ⌉ · q

≤ −⌈log T
√
T ⌉
(
1− (8n2 + n− 2) · 8n

2 log T√
T

)
≤ − log T

√
T/2

where the last transition follows under the assumption that T is sufficiently large such that√
T/ log T ≥ (8n2 + n− 2) · 8n2 · 2.
Now,

∑
gW

g is the sum of ≤ T independent random variables bounded by [−1, 1]. Thus,

Hoeffding’s inequality ensures that a deviation of log T
√
T/2 occurs with probability at most

exp

(
−2(log T

√
T/2)2

4 · T

)
= exp(log2(T )/8) = T log T/8,

as needed.

Part 2:
[
8n2 log T√

T
, 1− 8n2 log T√

T

]
. For this interval, we will use the DKW inequality to show that,

with high probability, the collection of {Zg1}g∈Gwelf and {Zg2}g∈Gwelf approximately match their

true distributions. Let F̂ 1 and F̂ 2 be the empirical CDFs of {Zg1}g∈Gwelf and {Zg2}g∈Gwelf . Let

ε = n log T√
T

. The DKW inequality [Dvoretzky et al., 1956] states that

Pr[sup
x
|F̂ i(x)− F i(x)| > ε] ≤ 2 exp(−2T (1)ε2).

Since T (1) ≥ T/2, this expands to

2 exp(−2T (1)ε2) ≤ 2 exp(−T · log2 T · n2/T ) = 2 exp(− log2 Tn2) = 2T−n2 log T ∈ O(T−c/2).

Furthermore, we claim that conditioned on this event holding for both i ∈ {1, 2}, along with
the assumption on the sampled quantiles that each Qg

i is distinct, (5) holds. Indeed, fix a q ∈[
8n2 log T√

T
, 1− 8n2 log T√

T

]
. We have that

X0
q − Y (n−2)⌈log T

√
T ⌉

q ≥ X0
q − Y 0

q − (n− 2)⌈log T
√
T ⌉

≥ T (1) · (1− F̂ 1(q))− T (1) · (1− F̂ 2(q))− 1− (n− 2)⌈log T
√
T ⌉
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= T (1) · (F̂ 2(q)− F̂ 1(q))− 1− (n− 2)⌈log T
√
T ⌉

> T (1) ·
(
F 2(q)− F 1(q)− 2ε

)
− 1− (n− 2)⌈log T

√
T ⌉

= T (1) ·
(

q

n− 1
− qn

n(n− 1)
− qn

n
− 2ε

)
− 1− (n− 2)⌈log T

√
T ⌉

= T (1) ·
(
q − qn

n− 1
− 2ε

)
− 1− (n− 2)⌈log T

√
T ⌉

= T (1) ·
(
q(1− qn−1)

n− 1
− 2ε

)
− 1− (n− 2)⌈log T

√
T ⌉

≥ T (1) ·
(
q(1− q)

n− 1
− 2ε

)
− 1− (n− 2)⌈log T

√
T ⌉

≥ T (1) ·
(
min(q, 1− q)

2(n− 1)
− 2ε

)
− 1− (n− 2)⌈log T

√
T ⌉

≥ T/2 ·
(

8n2 log T

2(n− 1) ·
√
T
− 2n log T√

T

)
− 1− (n− 2)⌈log T

√
T ⌉

≥ T/2 ·
(
4n log T√

T
− 2n log T√

T

)
− 1− (n− 2)⌈log T

√
T ⌉

≥ 2n log T
√
T − 1− (n− 2)⌈log T

√
T ⌉

≥ −1 ≥ −c,

as needed.

Part 3:
[
1− 8n2 log T√

T
, 1− 400n4 log2 T

T

]
Let q1 = 1 − 8n2 log T√

T
and q2 = 1 − 400n2 log2 T

T . We will

show that with high probability Y
(n−2)⌈log T

√
T ⌉

q1 ≤ 90n2 log2 T , and, similarly, X0
q2 ≥ 90n2 log2 T

with high probability. Together, these imply that X0
q1−Y

(n−2)⌈log T
√
T ⌉

q2 < c occurs with probability

O(T−c/2).

To that end, let us first consider Y
(n−2)⌈log T

√
T ⌉

q1 . We have that

E[Y (n−2)⌈log T
√
T ⌉

q2 ] ≤ T (1) · (1− q1)
2 + (n− 2)⌈log T

√
T ⌉ · (1− q1)

≤ 64n4 log2 T + (n− 2) · 8n2 log T ⌈log T
√
T ⌉

≤ 64n2 log4 T + 16n4 log2 T
√
T = 80n4 log2 T.

Thus, a standard Chernoff bound implies that

Pr[Y (n−2)⌈log T
√
T ⌉

q2 ≥ 90n4 log2 T ] ≤ exp(−80n4 log2 T · (1/8)2/(2 + 1/8)) ≤ Tn
4 log T/2 ∈ O(T−c/2).

Next, let us consider X0
q2 . We have that

E[X0
q2 ] ≥ T (1) · (1− q2)/2

≥ T · (1− q2)/4

≥ 100n2 log2 T.

Hence, a standard Chernoff bound implies that

Pr[X0
q2 ≤ 90n4 log2 T ] ≤ exp(−100n4 log2 T (1/102)/2) = Tn

4 log T/2 ∈ (T−c/2).
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Part 4:
[
1− 400n2 log2 T

T , 1
]

Let q = 1 − 400n2 log2 T
T . We will show that with high probability

Y
(n−2)⌈log T

√
T ⌉

q ≤ c. Note that Y
(n−2)⌈log T

√
T ⌉

q is integer valued, so it is sufficient to upper bound
the probability it is above c+ 1. To that end,

E[Y (n−2)⌈log T
√
T ⌉

q ] ≤ T (1) · (1− q1)
2 + L · (1− q1)

≤ 160000n8 log4 T/T + 400n4 log T ⌈log T
√
T ⌉/T

≤ 160000n8 log4 T/T + 800n4 log2 T/
√
T

Note that this value is O(log2 T/
√
T ). We will use the Chernoff bound which states that

Pr[W ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ
≤
(

e

(1 + δ)

)(1+δ)µ

for a random variableW with mean µ. In this case, if we set δ such that 1+δ = (c+1)/E[Y (n−2)⌈log T
√
T ⌉

q ],
note that δ ∈ Ω(

√
T/ log2 T ). Thus this bound implies an overall probability bound of

O

((
log2 T√

T

)c+1
)
∈ O(T−c/2),

as needed.
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