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We consider the fundamental problem of fairly and efficiently allocating T indivisible items among n

agents with additive preferences. Items become available over a sequence of rounds, and every item must

be allocated immediately and irrevocably before the next one arrives. Previous work shows that when the

agents’ valuations for the items are drawn from known distributions, it is possible (under mild assumptions)

to find allocations that are envy-free with high probability and Pareto efficient ex-post. However, this requires

that agents accurately report their values to the algorithm, which rarely happens in practice.

We study a partial-information setting, where true item values are hidden from the algorithm and it is only

possible to elicit ordinal information in the form of a ranking or pairwise comparison relative to prior items.

When values are drawn from i.i.d. distributions, or correlated distributions consisting of a shared common

value for each item with i.i.d. noise, we give an algorithm that is envy-free and (1− 󰂃)-welfare-maximizing

with high probability. We provide similar guarantees (envy-freeness and a constant approximation to welfare

with high probability) even with minimally expressive queries that ask for a comparison to a single previous

item. For independent but non-identical agents, we obtain envy-freeness and a constant approximation to

Pareto efficiency with high probability. Our results are asymptotically tight. A computational study shows

that envy-freeness and efficiency can be achieved on practical time-horizons.

Key words : Online allocation, fairness, online learning

1. Introduction

Motivated by operations in food rescue services, we consider the following fundamental fair division

problem. A set of T indivisible items, arriving one at a time, must be allocated among a set of n

agents with additive preferences. The value vi,t that agent i has for the item in round t is realized

once the item arrives. Each item is allocated immediately and irrevocably upon arrival, and we ask

that the overall allocation is both fair and efficient.

As fairness measure, we study envy-freeness, a prominent notion of fairness which requires that

every agent prefers their allocation over the allocation of any other agent. Previous work shows that,

*A preliminary version of this paper appeared at NeurIPS’22
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despite the uncertainty about future items, one can achieve simultaneous fairness and efficiency

when agents’ values are stochastic. Specifically, when each vi,t is drawn i.i.d. from a distribution D,

the simple algorithm that maximizes welfare — each item is allocated to the agent with the highest

value — is envy-free with high probability and (obviously) ex-post Pareto efficient (Dickerson

et al. 2014, Kurokawa et al. 2016). The same guarantee holds for independent and non-identical

agents (where vi,t is drawn from an agent-specific distribution Di) for the algorithm that maximizes

weighted welfare (Bai and Gölz 2022). Even when agents’ valuations for an item are correlated

(but items are independent), Pareto efficiency ex-post is compatible with strong fairness guarantees

(Zeng and Psomas 2020).

Despite the computational simplicity of (most of) the aforementioned algorithms, an unappeal-

ing aspect, especially from a practical perspective, is the requirement that agents report an exact

numerical value for each item. There are rare organizations that are able to elicit such fine-grained

valuations: for example, Feeding America manages their allocations with a market-based mecha-

nism in which recipients bid daily on available donations (Prendergast 2022). However, eliciting

numerical valuations is often deemed too difficult when low volume, the unpredictability of dona-

tions arriving and the cognitive burden of elicitation may prevent recipients from forming regular

habits of reporting valuations, or when it is difficult to compare reports between recipients. Fur-

thermore, interpersonal comparisons of reported utilities are quite controversial (Robbins 1938).

Because of this, many real-world settings discussed in the literature involve much simpler forms of

eliciting agents’ interest than reporting cardinal utilities. For example, Shi et al. (2021) describes

that at 412 Food Rescue, based in Pittsburgh, PA, a dispatcher matches a donation to a recipient

on an ad-hoc basis and gives them the opportunity to claim it, before continuing to the next recipi-

ent, if necessary; MEANS database, a nonprofit matching donors to food shelves and soup kitchens

in 50 states, announces an available donation and assigns it to the first recipient who expresses

interest (MEANS database 2023). In both cases eliciting values is limited to getting a binary signal

of interest from a potential recipient, a far cry from knowing their exact value for the item.

In this paper, we study the power and limits of eliciting ordinal information in dynamic fair

division. The value vi,t of agent i for item t is drawn from an unknown distribution upon arrival.

Instead of this value, the algorithm is provided only partial ordinal information about the item,

e.g., its rank relative to a subset of the past items allocated to this agent, or even just a pair-

wise comparison to a single previous item (a binary signal). Does this give up too much in an

attempt to simplify elicitation? Or, can we learn the unknown distribution sufficiently accurately

to simultaneously guarantee fairness and efficiency?
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1.1. Our Contribution

We start by establishing a separation between the cardinal setting and our ordinal one. Pareto

efficiency alone is trivial (allocate all goods to the same agent) and, in the cardinal setting, Pareto

efficiency ex-post is compatible with envy-freeness with high probability as long as agents are

independent. We prove in Theorem 1 that in our setting, even for the case of two i.i.d. agents

and any known distribution, envy-freeness with high probability is incompatible with even a very

mild notion of exact Pareto efficiency, one-swap-Pareto efficiency, which requires that there is no

beneficial one-to-one trade of items between agents but allows for improvements via many-to-many

trades of items.

We proceed to give an essentially matching positive result. For any number of i.i.d. agents and an

unknown value distribution D, there exists an algorithm (Algorithm 1) that is envy-free with high

probability and guarantees a (1−ε)-approximation to the optimal utilitarian social welfare (the sum

of utilities), for all ε> 0, with high probability (Theorem 2). When an item arrives, the algorithm

learns for each agent i its relative rank compared to a subset of prior items allocated to agent i, but

otherwise knows nothing about the underlying numerical valuation nor the value distribution. We

view this lack of additional knowledge as a key feature of our algorithm, aligning with the Wilson

Doctrine (Wilson 1985), that mechanisms shouldn’t rely on agents’ underlying beliefs and value

distributions. Developing this algorithm requires balancing exploration and exploitation. We need

enough reference items to “estimate” values accurately but not too many to avoid inefficiency. We

alternate between these goals with carefully timed phases to achieve the desired properties.

Given this strong positive result, we explore the limits of what we can achieve when further

restricting the amount of information available. Indeed, even ranking an item among arbitrary

received ones may be too demanding if the reference items were given hundreds of time steps ago.

What if each agent can remember only a single item previously allocated to them, and the fresh

item is compared to just this one item? That is, the algorithm only learns whether the new item

is better or worse than the item in memory and may, at that time, choose to replace the item

in memory. Surprisingly, the aforementioned positive result can almost be recovered even in this

very restrictive setting. We prove that there exists an algorithm (Algorithm 2) that is envy-free

with high probability and guarantees a 1−1/e− ε approximation to the optimal welfare with high

probability, for all ε> 0 (Theorem 4). It again requires no extra information about the underlying

numerical values or distribution, only making use of the elicited comparisons. In addition, we

give a near-matching lower bound: no algorithm with a memory of one item can achieve a 0.999-

approximation to the social welfare with high probability; therefore a constant approximation like

Algorithm 2 is all we can hope for.
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Next, we relax the i.i.d. assumption and show that our algorithms are still effective when agents

are correlated or non-identical. First, we consider agents that agree on a noisy common valuation of

each item, so vi,t = vt+ 󰂃i,t for vt ∼Dcom, vi,t ∼Dnoise. Algorithm 1 (with some small modifications)

is enough to guarantee envy-freeness and a 1− 󰂃 approximation to welfare with high probablility

(Theorem 5). Second, when each agent i’s values are drawn from an unknown distribution Di, we

show that it is impossible to get a 1+
√
5

4
≈ .809 approximation to Pareto efficiency with probability

more than 2/3, even for two agents and unbounded memory (Theorem 6). At the same time,

Algorithms 1 and 2 are envy-free and 1/e approximately Pareto efficient with high probability.

Note that, though both algorithms give the same formal guarantees for non-identical agents and

Algorithm 2 elicits strictly less information, one might still prefer to use Algorithm 1 since it has

significantly shorter exploration phases.

We conclude with a computational study on both synthetic value distributions and values learned

from ratings data with a collaborative filtering algorithm. Though our theoretical results only

guarantee that Algorithm 1 is attractive on an infinite time horizon, we find that on the vast

majority of instances we evaluate, after 1000 items, the allocations are envy-free and provide more

than 90% of the optimal welfare achievable with full information. Our results show that more

correlated and skewed distributions are harder to learn. Finally, we consider variants of Algorithm 1

aimed at smoothing the relatively long periods of poor performance during sampling phases —

these perform essentially as well as Algorithm 1, as long as the structure of resetting epochs is

retained.

1.2. Related Work

Motivated by the reality that eliciting cardinal valuations is often impractical and prone to errors,

a growing body of work in computer science studies what can be achieved by algorithms that only

elicit preferences of limited expressiveness. Procaccia and Rosenschein (2006) consider mechanisms

that receive ordinal information as input but are evaluated on the cardinal utilities underlying

the ordinal reports. They define the notion of distortion to measure the worst-case deterioration

of an aggregate cardinal objective (e.g., utilitarian social welfare) due to only having access to

ordinal information. Recent works prove bounds on the distortion for many problems in social

choice, including matching (Filos-Ratsikas et al. 2014, Anshelevich and Sekar 2016, Abramowitz

and Anshelevich 2018, Anshelevich and Zhu 2019), voting (Boutilier et al. 2015, Anshelevich et al.

2018, Caragiannis et al. 2017, Goel et al. 2017, Mandal et al. 2020, Munagala and Wang 2019,

Kempe 2020, Gkatzelis et al. 2020, Kizilkaya and Kempe 2022, Charikar et al. 2024), and partic-

ipatory budgeting (Benade et al. 2021); see (Anshelevich et al. 2021) for a recent survey. Beyond

ordinal inputs, identical elicitation concerns inspired the study of abstractions, consisting of partial
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or coarsened information, for computing market equilibria in Kroer et al. (2022). We are moti-

vated by the same elicitation constraints but where distortion measures the worst-case loss over

all instances, we assume values are stochastic, as a result, we can guarantee multiple attractive

properties simultaneously with high probability.

Several papers study fair division in static settings under ordinal preferences, e.g., (Aziz et al.

2015, Bouveret et al. 2010, Baumeister et al. 2017, Nguyen et al. 2017), but often these models

do not assume an underlying cardinal model and work directly on the ordinal preferences. Ama-

natidis et al. (2016) assume underlying cardinal information and, among other results, bound the

approximation ratio of truthful mechanisms that elicit rankings. Closer to our work, Halpern and

Shah (2021) study rules that have access to the ranking of the top-k items of each agent and bound

the ratio of the social welfare of the allocation returned by a rule in the worst case. They also

characterize the value of k needed to achieve prominent notions of fairness, namely envy-freeness

up to one item (EF1) and approximate maximin share guarantee (MMS), and bound the loss in

efficiency incurred due to fairness constraints in this setting.

Our work contributes to the growing literature in dynamic fair division (Kash et al. 2014, Alek-

sandrov et al. 2015, Friedman et al. 2015, 2017, Benade et al. 2018, He et al. 2019, Zeng and Psomas

2020, Gkatzelis et al. 2021, Barman et al. 2022, Gorokh et al. 2021, Vardi et al. 2022) and we note

that the welfare-maximizing algorithms of Dickerson et al. (2014), Kurokawa et al. (2016), Bai and

Gölz (2022) work in the dynamic setting, even though the their settings are not explicitly dynamic.

Bogomolnaia et al. (2022) study proportionality and envy-freeness and characterize undominated

allocation rules for both goods and bads in a model which can be interpreted as online with poten-

tially correlated stochastic valuations from unknown distributions, with additional access to the

mean of each distribution. We make much stronger assumptions about valuations (i.e., they are

either independent or correlated in specific way) but also have access to less information about the

arriving item, Bogomolnaia et al. (2022) observe the the vector of values in addition to the distri-

bution means while we observe only ordinal information. Beyond stochastic valuations, (Benade

et al. 2018) show that it is possible to achieve sublinear envy by randomly allocating every item

when agents’ valuations are adversarially generated (and this is optimal); however, sublinear envy

is incompatible with non-trivial efficiency even in the cardinal setting (Zeng and Psomas 2020). To

the best of our knowledge, we are the first to study imperfect expressivity in dynamic fair division.

We assume fixed agents and items that arrive over time, however, other models of online alloca-

tion have also been studied with the dual objectives of fairness and efficiency. For example, Sinclair

et al. (2022) consider a model with a fixed pool of resources where agents arrive over time and a

core decision is how much to allocate in this time step versus how much to save for the future.



6 Benadè, Halpern and Psomas: Dynamic Fair Division with Partial Information

Further afield, our paper is related to the vast literature on online learning (surveyed in Hoi

et al. (2021)). In a classical setting, there are T days and on each day the algorithm follows the

advice of one of n experts. The algorithm receives reward equal to value of the expert chosen

of that day (in the full feedback variant), and objective is to minimize the difference in reward

between the algorithm and the best expert in hindsight. In contrast, we allocate items to agents

without knowing their values and minimize the difference in bundle values (envy). There are several

variants of online learning with partial information (or bandit algorithms) (see. e.g., Cesa-Bianchi

and Lugosi (2006)) but we are not aware of technical connections. Our setting, where hidden values

are drawn from unknown distributions, also reminds of prior-independent auctions (Dhangwatnotai

et al. 2010), where the task is to design mechanisms that perform well in the worst case even

compared to the tailor-made mechanism which knows the distributions.

2. Preliminaries

A set of T indivisible items/goods, labeled by G = {1,2, . . . , T}, needs to be allocated to a set of

n agents, labeled by N = {1, . . . , n}. Agent i ∈ N assigns a value vi,t ∈ [0,1] to item t ∈ G. We

assume agents have additive valuation functions, so vi(S) =
󰁓

t∈S vi,t for S ⊆ G. An allocation A

is a partition of the items into bundles A1, . . . ,An, where Ai is the set of items assigned to agent

i∈N . Each allocation has an associated utility profile v(A) = (v1(A1), . . . , vn(An)).

Items arrive online, one per round. The agents’ valuations for the item in round t (the t-th item)

are realized when the item arrives. Every item is allocated immediately and irrevocably before

moving on to the next round. We write Gt = {1,2, . . . , t} for the set of items that arrived in the

first t rounds, and At
i for the allocation of agent i after the t-th item was allocated.

We consider three different models which specify how values are generated. In the i.i.d. model,

the value of agent i for item t is independently drawn from an unknown distribution D with CDF

F , i.e., vi,t ∼D for all i∈N and t∈ G. In the correlated model, the value of agent i for item t is

vi,t = vcomt + εi,t, where vcomt ∼Dcom is a common value drawn from an unknown value distribution

with CDF F com, and each agent draws independent noise εi,t from an unknown noise distribution

Dnoise. For a given item, agent values are now correlated, though they are still independent over

time. In the non-i.i.d. model, the value of item t for agent i is independently drawn from an

unknown, agent-dependent distribution Di with CDF Fi, i.e., vi,t ∼Di for all i∈N and t∈ G.
We write Vi for a random variable following Di, and Vi,t for the random variable representing

i’s value for item t. It is often convenient to work directly with the quantile of an agent’s value

rather than the value itself; let Qi = Fi(Vi) and Qi,t = Fi(Vi,t) respectively be the random variable

denoting the quantile of agent i the associated item. Note that all Qi and Qi,t are i.i.d. and follow a

Unif[0,1] distribution. Unless explicitly stated otherwise, we assume all distributions are continuous

(i.e., do not have point masses).
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Ordinal Information. We assume the realizations vi,t are not available. Instead, our algorithms

have access to ordinal information. Specifically, given current item t, the algorithm can access each

agent’s ranking for S = {t}∪M , M ⊆ Gt−1. The size of M , which we will informally refer to as the

memory size, determines the complexity of eliciting information from each agent. In one extreme,

agent i compares a new item t to a single item they had previously received, i.e., M ⊆At−1
i , |M |≤ 1.

In the other extreme, t is compared to all previous items she received, so M = At−1
i . We write

σi(S) for the ranking of agent i for a subset S of the items, and σ−1
i (S, t) for the position of item

t ∈ S with respect to a subset S according to agent i. The highest value item is in position 1

and the lowest in position |S|. For example, if S = {1,4}, vi,1 = 1 and vi,4 = 0.1, σi(S) = (1≻ 4),

σ−1
i (S,1) = 1 and σ−1

i (S,4) = 2.

Algorithms. An algorithm A, in each step t, queries each agent for ordinal information with

respect to some subset M and then makes a (possibly randomized) allocation decision based on

this ordinal information and the history so far. An instance of our problem is parameterized by

the number of agents n and the (unknown) value distributions D1, . . . ,Dn. Let EP (t) be the event

that some algorithm satisfies property P (e.g., envy-freeness or PO or ε-welfare) at time t. We are

interested in the probability that an algorithm satisfies certain properties in the limit, as the number

of rounds tends to infinity, where the randomness is over the random choices of the algorithm as

well as the randomness in the valuations.

Definition 1. An algorithm satisfies P with high probability if limt→∞Pr[EP (t)] = 1.

Note that this definition of high probability allows for dependency on n and the underlying

distributions (i.e., they are treated as constants).

Efficiency notions. An allocation A Pareto dominates an allocation A′, denoted A≻ A′, when

vi(Ai)≥ vi(A
′
i) for all i∈N and there exists j ∈N with vj(Aj)> vj(A

′
j). An allocation A is Pareto

efficient or Pareto optimal (PO) if there is no feasible (integral) allocation that Pareto dominates

it. An allocation A′ is in the (one) swap-neighborhood of A when it can be created from A with a

single exchange of items between one pair of agents. Formally, there exist i, j ∈N and items zj ∈Aj

and zi ∈Ai so that A′
i = (Ai \ {zi})∪ {zj}, A′

j = (Aj \ {zj})∪ {zi}, and A′
k =Ak for all other agents

k ∕= i, j. An allocation A is one-swap Pareto optimal (SPO) if it is undominated by any allocation in

its swap-neighborhood. We use a notion of approximate efficiency defined by (Ruhe and Fruhwirth

1990) according to which an allocation A is α-Pareto efficient when v(A)/α is undominated.

The social welfare of an allocation A is sw(A) =
󰁓

i∈N vi(Ai). Let allocation A∗ denote a (social)

welfare optimal allocation for which sw(A∗)≥ sw(A) for all feasible allocations A. An allocation A

provides an α-approximation to welfare if sw(A)≥ α · sw(A∗). Notice that an α-approximation to

welfare implies that the allocation is also α-Pareto efficient.
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Fairness notions. We focus on a prominent notion of fairness called envy-freeness. An allocation

AT = (AT
1 , . . . ,A

T
n ) of T items is envy-free (EF) when vi(A

T
i ) ≥ vi(A

T
j ) for all i, j ∈ N , and c-

strongly-envy-free (c-strong-EF) when vi(Ai)≥ vi(Vj)+ cT .

3. Ideal Quantile-based Algorithms.

For our analysis, it will be useful to compare our algorithms with ideal algorithms that know

exact quantile values for every item (in fact, several of our lower bounds apply to these stronger

algorithms too). Given quantiles, two algorithms of interest are (1) quantile maximization, which

allocates each item to the agent with the highest quantile value for it, and (2) “q-threshold,” which

allocates each item uniformly at random among agents whose quantile is at least q (and uniformly

at random over all agents, if all quantile values are less than q). Threshold algorithms are natural

when the memory length is one, while unbounded memory length allows (approximate) quantile

maximization.

In the i.i.d. model, quantile maximization is the same as value maximization, and thus envy-free

with high probability and ex-post welfare optimal. The property we will use is c-strong envy-

freeness, for some distribution-dependent constant c, which we state as Lemma 1. This was essen-

tially proved by Dickerson et al. (2014); we provide an alternate proof that also works, largely

unchanged, for the n−1
n

-threshold algorithm; it can be found in Section EC.1.1.

Lemma 1. [Essentially Dickerson et al. (2014).] In the i.i.d. and non-i.i.d. models, the quantile

maximization algorithm and the n−1
n

-threshold algorithm are c-strongly-envy-free, with probability

1− exp(−Ω(T )), where the constant c=mini∈N (E[Vi | Qi ≥ 1/2]−E[Vi])/(4n).

Note that c is strictly positive since our distributions are continuous.

Next, we show that in the i.i.d. model, the n−1
n

-threshold algorithm gives a 1− 1
e
−ε approximation

to welfare (Lemma 2) with high probability. This approximation is also obtained by a more general

result on single threshold algorithms for prophet inequalities of Ehsani et al. (2018), who use the

threshold e−1/n. Our setting with identical distributions permits a simpler proof which we provide

here for the sake of completeness for threshold 1− 1/n, which simplifies some later computations.

Lemma 2. In the i.i.d. model, the n−1
n

-threshold algorithm guarantees a
󰀃󰀃
1− 1

e

󰀄
− ε

󰀄
-

approximation to welfare, with probability 1− exp(−Ω(T )), for all ε> 0.

Proof. Let F be the CDF of an arbitrary continuous distribution. Let τ = F−1(n−1
n

) be the

value at the n−1
n

threshold. Note that having Qi ≥ n−1
n

is equivalent to having Vi ≥ τ . We can upper

bound the expected maximum value by

E[max
i

Vi]≤ τ +E[(max
i

Vi − τ)+]≤ τ +
󰁛

i

E[(Vi − τ)+] = τ +n ·E[(V − τ)+]
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where (s)+ :=max(s,0) and V represents a generic draw from D.

The n−1
n

threshold algorithm can also be interpreted as follows: pick a random order over the

agents and give it to the first one whose value is above τ . We will lower bound the expected

welfare generated by each item in this algorithm, ignoring contributions to the welfare when no

agent is above the threshold. Fix an arbitrary ordering of the agents. The probability the item is

given to the i’th agent is Pr[Vi ≥ τ ∧Vi′ < τ ∀i′ < i] = Pr[Vi ≥ τ ]
󰁔

i′<iPr[Vi′ < τ ] (since values are

independent). Conditioned on this event, the value is E[Vi | Vi ≥ τ ]. So the total welfare is

󰁛

i

E[Vi | Vi ≥ τ ]Pr[Vi ≥ τ ]
󰁜

i′<i

Pr[Vi′ < τ ].

Furthermore, E[Vi | Vi ≥ τ ] = τ + E[Vi − τ | Vi ≥ τ ]. In addition, we can write E[Vi − τ | Vi ≥ τ ] ·
Pr[Vi ≥ τ ] =E[(Vi − τ)+]. Putting this together, we have that the welfare is

󰁛

i

(τ ·Pr[Vi ≥ τ ] +E[(Vi − τ)+])
󰁜

i′<i

Pr[Vi′ < τ ].

Now, Pr[V ≥ τ ] = 1/n for V ∼D, so we can simplify this to

(τ/n+E[(V − τ)+])
󰁛

i

(1− 1/n)i−1 = (τ/n+E[(V − τ)+]) ·
1− (1− 1/n)n

1− (1− 1/n)

≥ (τ/n+E[(V − τ)+]) ·n · (1− 1/e)

= (1− 1/e)(τ +n ·E[(V − τ)+])

≥ (1− 1/e)E[max
i

Vi].

Finally, for any fixed ε > 0, standard Chernoff bounds tell us that with probability 1 −
exp(−Ω(T )), the optimal welfare of T items is at most T · (1 + ε/2)E[maxi Vi] while the welfare

of the threshold algorithm is at least T · (1− ε/2)
󰀃
1− 1

e

󰀄
E[maxi Vi]. Indeed, the expected optimal

welfare is equal to T ·E[maxi Vi]. The standard multiplicative Chernoff bound says that the sum

of i.i.d. variables exceeds (1 + 󰂃/2) times its expectation µ is at most exp(−µ󰂃2/12). Plugging in

µ= T ·E[maxi Vi], we get the desired statement. The statement about the welfare of the threshold

algorithm follows similarly. Thus, the algorithm is a

󰀕
1− 1

e

󰀖
· (1− ε/2)/(1+ ε/2)≥

󰀕
1− 1

e

󰀖
(1− ε)≥

󰀕
1− 1

e

󰀖
− ε

approximation to welfare, with probability 1− exp(−Ω(T )). □
Next, we prove that both ideal algorithms are approximately efficient. Let P∗ be the following

property of an allocation: all items such that exactly one agent has quantile values at least 1−1/n

are in the bundle of this agent. Both ideal algorithms (quantile maximization and 1−1/n-threshold)

satisfy P∗. We prove that, in the non-i.i.d. model, P∗ implies an almost 1/e approximation to
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efficiency. Our proof uses the fact that there is a (roughly) 1/e probability that exactly one agent

has the high quantile, so the value of an agent’s bundle in an algorithm that satisfies P∗ is, with

high probability, a 1/e approximation to their value for their T/n most valuable items. Therefore,

when considering an alternate allocation A′, the agent in A′ that gets at most T/n items cannot

be improved upon by more than a 1/e factor.

Lemma 3. In the non-i.i.d. model, every algorithm whose allocations satisfy P∗ is (1/e − ε)-

Pareto optimal, with high probability, for all ε> 0.

Proof. Fix an ε ∈ (0,1), and choose ε′ such that 1−ε′

(1+ε′)2 ·
1
e
> 1

e
− ε (using ε′ = ε/3 will do). Fix

distributions with CDFs F1, . . . , Fn for each agent i∈N , and a time T . Suppressing the superscript,

for ease of notation, let Ai =AT
i be the bundle allocated at time T to each agent i by an algorithm

that satisfies P∗. Let Atop
i be the set of the T/n most valuable items for each agent i. Let Ahigh

i =

{ t∈ GT | Fi(vi,t)≥ 1− 1+ε′

n
} be the set of items that agent i has “high” value for, in the sense

that they come from the top 1+ε′

n
portion of their distribution. We show the following 3n events,

Eij for i∈N and j ∈ {1,2,3}, occur simultaneously with high probability (in T ).

1. Ei1: vi(A
top
i )≤ vi(A

high
i ).

2. Ei2: vi(A
high
i )≤ T · (1+ε′)2

n
EQ∼Unif[1−1/n,1][F

−1(Q)].

3. Ei3: vi(Ai)≥ T · 1−ε′

en
EQ∼Unif[1−1/n,1][F

−1(Q)].

Each of these individually will follow from a straightforward application of Hoeffding’s inequality

or Chernoff bounds, showing they each individually occur with probability exponentially close to

1 in T . This implies that they all occur simultaneously with high probability. Finally, we will show

that conditioned on all 3n occurring, the allocation is (1/e− ε)-PO.

Let us begin with Ei1 for each agent i. The event occurs when there are at least T/n items t∈ GT

such that Fi(vi,t) ≥ 1− 1+ε′

n
. Each item independently satisfies this property (Fi(vi,t) ≥ 1− 1+ε′

n
)

with probability 1+ε′

n
. Hence the probability this does not occur is at most 2 exp (−2ε′2T ).

Next, consider Ei2 for each agent i. The expected contribution of each item to vi(A
high
i ) is

E
Q∼Unif[0,1]

󰀗
F−1

i (Q) · I
󰀗
Q≥ 1− 1+ ε′

n

󰀘󰀘
=

1+ ε′

n
E

Q∼Unif[1− 1+ε′
n ,1]

[F−1
i (Q)]

≤ 1+ ε′

n
E

Q∼Unif[1− 1
n ,1]

[F−1
i (Q)].

We now use the following multiplicative version of the Chernoff bound,

Pr

󰀥
󰁛

i

Vi ≥ (1+ δ)
󰁛

i

E[Vi]

󰀦
≤ exp

󰀣
−δ2

3

󰁛

i

E[Vi]]

󰀤
,

to conclude that the probability that vi(A
high
i ) exceeds T · (1+ε′)2

n
EQ∼Unif[1−1/n,1][F

−1(Q)]≥ (1+ε′) ·

E[vi(Ahigh
i )] is at most exp

󰀕
−

ε′2(1+ε′)E
Q∼Unif[1− 1

n ,1]
[F−1

i (Q)]

3n
·T

󰀖
.
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Finally, consider Ei3 for each agent i. We will show that the expected contribution of each item to

vi(Ai) is at least
1
en
·EQ∼Unif[1− 1

n ,1][F
−1
i (Q)]. Indeed, consider an item such that the quantile for agent

i is Qi > 1−1/n while Qj < 1−1/n for all agents j ∕= i. This occurs with probability 1
n
·
󰀃
1− 1

n

󰀄n−1 ≥
1
en
, and when this occurs, since the algorithm satisfies P∗, it must allocate the item to i. Further,

when this does occur, the expected value of such an item is EQ∼Unif[1− 1
n ,1][F

−1
i (Q)], since it is

independent of the other agent’s values. Hence the expectation is at least 1
en

EQ∼Unif[1− 1
n ,1][F

−1
i (Q)].

Finally, we again use a multiplicative Chernoff bound to show that

Pr

󰀗
vi(Ai)≤ (1− 󰂃′) · T

en
E

Q∼Unif[1− 1
n ,1]

[F−1
i (Q)]

󰀘
≤ exp

󰀣
−
ε′2EQ∼Unif[1− 1

n ,1][F
−1
i (Q)]

2en
·T

󰀤
.

Now, suppose that Eij hold for all i∈N and j ∈ {1,2,3}. We show that this implies the allocation

A1, . . . ,An is (1/e− ε)-PO. Fix an arbitrary allocation A′
1, . . . ,A

′
n. We show there exists an agent

i ∈N such that vi(A
′
i)<

vi(Ai)

1/e−ε
. First, there must be some agent i such that |A′

i|≤ T/n. Since A′
i

can be at most as valuable as the most-valuable T/n items, we have

vi(A
′
i)≤ vi(A

top
i )

≤(Ei1) vi(A
high
i )

≤(Ei2) T · (1+ ε′)2

n
E

Q∼Unif[1−1/n,1]
[F−1(Q)]

≤(Ei3) · (1+ ε′)2

(1− ε′)(1/e)
vi(Ai)

<
1

1/e− ε
vi(Ai),

as needed. □

4. Unbounded memory in the i.i.d. model

We explore some fundamental limits of our setting. Efficiency by itself is easy: allocate all items

to the same agent. However, in contrast to the cardinal setting, we find one-swap Pareto efficiency

is incompatible with envy-freeness with high probability, even for two i.i.d. agents, and even when

the underlying distribution is known.

Theorem 1. In the i.i.d. model, even for n = 2 agents, there does not exist an algorithm A

which is one-swap Pareto efficient and envy-free with high probability, even when values are sampled

according to D, for any continuous, bounded and known value distribution D.

Proof. Fix an arbitrary, continuous value distribution D and an algorithm A.

As the agents are a priori identical, we can assume without loss of generality that A gives the

first item to agent 1. We will show that, with a positive probability, this decision becomes an
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irrevocable “mistake,” in the sense that agent 2 really liked the item and agent 1 did not. This

mistake will make envy-freeness and one-swap PO incompatible.

First, we find values to make this mistake sufficiently bad. Let g : [0,1]→ [0,1] be the function

g(q) = E[V | V ≤ F−1(q)]/E[V ], which maps a quantile q to the ratio of the expected value of

an item below quantile q to the expected value of an arbitrary item. g is a continuous increasing

function with g(1) = 1, so there is some quantile q̂ < 1 such that g(q̂)≥ 0.9. Let q∗2 =max(q̂,0.9).

Since g is increasing, g(q∗2)≥ g(q̂)≥ 0.9. Let q∗1 = 0.1, v∗1 = F−1(q∗1) and v∗2 = F−1(q∗2). Let Emistake be

the event that V1,1 < v∗1 and V2,1 > v∗2 . Define c := Pr[Emistake] = (1−q∗2) ·q∗1 to be the probability that

Emistake occurs. D is continuous, so c > 0. Our lower bound on the probability that the allocation

at step t violates either envy-freeness or one-swap PO will only depend on c.

Let Ej be the event that for item j we have that both V1,j ≥ v∗1 and V2,j ≤ v∗2 . Notice that under

Ej, though agent 1 has higher expected quantile than agent 2, agent 2 still has higher actual quantile

for the item with constant probability. If Emistake occurs, the only way to maintain one-swap Pareto

efficiency is to allocate item j to agent 1 every time Ej occurs; otherwise, swapping items 1 and

j between the two agents yields a Pareto improvement. This constraint will make envy-freeness

unlikely since, conditioned on Emistake, Ej will occur for a large majority of items, leading to a large

discrepancy in bundle sizes.

Let Emanyhigh(t) be the event
󰁓t

j=2 V2,j · I[Ej] ≥ (t − 1) · 0.7 · E[V ]. In other words, Emanyhigh(t)

occurs when agent 2 has a high value for items j, 2 ≤ j ≤ t, for which Ej occurs (i.e., the items

that must be given to agent 1 in order to satisfy one-swap PO). Let Enormalval(t) denote the event

that
󰁓t

j=2 V2,j ≤ (t− 1) · 1.1 ·E[V ]. We first show that for sufficiently large t, the probability that

both Emanyhigh(t) and Enormalval(t) occur is at least 1/2. To do so, we prove each event occurs with

probability at least 3/4, and then apply a union bound.

First, since each V1,j and V2,j are independent, Pr[Ej] ≥ 0.9 · 0.9 = 0.81, and E[V2,j|Ej] =

E[V2,j | V2,j ≤ v∗2 ]. Also, from the definition of g(q̂) and the choice of q∗2 , E[V2,j | V2,j ≤ v∗2 ]≥ 0.9 ·E[V ].

It follows that E[V2,j · I[Ej]] = E[V2,j|Ej] · Pr[Ej] ≥ 0.729 · E[V ]. A straightforward Chernoff bound

establishes that Pr[Emanyhigh(t)]≥ 3/4 for t at least 6
E[V ]

.

Let Yj = V2,j · I[Ej] for all j. Then, E[Yj]≥ 0.729 ·E[V ], and E[
󰁓T

j=2 Yj]≥ (t−1) ·0.729 ·E[V ]. We

are interested in the probability that
󰁓t

j=2 Yj is at least (t−1) ·0.7 ·E[V ], i.e., the probability that
󰁓t

j=2 Yj is at least 0.7
0.729

its expectation.

We use the following Chernoff bound: Let Y1, . . . , Yn be independent random variables that take

values in [0,1], and let Y be their sum. Then, for all δ ∈ [0,1), Pr[Y ≤ (1− δ)E[Y ]]≤ e−
E[Y ]δ2

2 .

Continuing our derivation:

Pr

󰀥
t󰁛

j=2

Yj ≥ (t− 1) · 0.7 ·E[V ]

󰀦
=Pr

󰀥
t󰁛

j=2

Yj ≥
0.7

0.79
E[

t󰁛

j=2

Yj]

󰀦
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= 1−Pr

󰀥
t󰁛

j=2

Yj <
0.7

0.79
E[

t󰁛

j=2

Yj]

󰀦

≥ 1−Pr

󰀥
t󰁛

j=2

Yj ≤ 0.89E[
t󰁛

j=2

Yj]

󰀦

≥ 1− exp

󰀣
−
E[
󰁓t

j=2 Yj](0.89)
2

2

󰀤
,

which is at least 3/4 when
E[
󰁓t

j=2 Yj ](0.89)
2

2
is at least ln(4), or, equivalently, if t≥ 1+ 2 ln(4)

0.7·(0.89)2·E[V ]
.

Since 2 ln(4)

0.7·(0.89)2 < 5 and E[V ]< 1, so t≥ 6
E[V ]

suffices. Pr[Enormalval(t)]≥ 3/4 follows similarly.

Next, observe that Emanyhigh(t)∩Enormalval(t) is independent of Emistake, since the two events depend

on disjoint sets of independent random variables. Therefore, Pr[Emistake ∩ Emanyhigh(t)∩ Enormalval(t)] =

Pr[Emistake] ·Pr[Emanyhigh(t)∩ Enormalval(t)]≥ c · 1/2 for t≥ 6/E[V ].

Let ESPO(t) and EEF(t) be the events that the allocation at step t is one-swap PO, and envy-

free, respectively. When Emistake ∩ Emanyhigh(t) ∩ Enormalval(t) occur, the allocation cannot be both

one-swap PO and envy-free, i.e. Pr
󰁫
ESPO(t)∩ EEF(t) | Emistake ∩ Emanyhigh(t)∩ Enormalval(t)

󰁬
= 1. To see

this, notice that first, due to Emistake, the only way to remain one-swap PO is to give each item j to

agent 1 every time Ej occurs. Second, Emanyhigh(t) ensures that agent 2’s value for these items, and

hence agent 2’s value for agent 1’s bundle, is at least 0.7 · (t− 1) · E[V ] + v2,1. Third, Enormalval(t)

ensures that agent 2’s value for all items is at most 1.1 · (t− 1) ·E[V ] + v2,1, which is strictly less

than twice her value for agent 1’s bundle. We conclude that the allocation at step t cannot be

proportional, and is hence not envy-free. Overall, we have that

Pr
󰁫
ESPO(t)

󰁬
+Pr

󰁫
EEF(t)

󰁬
≥Pr

󰁫
ESPO(t)∪ EEF(t)

󰁬

=Pr
󰁫
ESPO(t)∩ EEF(t)

󰁬

≥Pr
󰁫
ESPO(t)∩ EEF(t)∩ Emistake ∩ Emanyhigh(t)∩ Enormalval(t)

󰁬

=Pr
󰁫
ESPO(t)∩ EEF(t) | Emistake ∩ Emanyhigh(t)∩ Enormalval(t)

󰁬
·

·Pr[Emistake ∩ Emanyhigh(t)∩ Enormalval(t)]

≥ c/2.

Therefore, for t≥ 6/E[V ], at least one of Pr
󰁫
ESPO(t)

󰁬
and Pr

󰁫
EEF(t)

󰁬
is at least c/4. We conclude

that no algorithm can be both envy-free and one-swap PO with high probability. □
Theorem 1 implies that when we have access to only ordinal information, we need to settle for

some approximation to envy-freeness and efficiency. Our main positive result for this section is

an algorithm that essentially matches the aforementioned lower bound (noting that an allocation

satisfying a (1− ε) approximation to welfare is also (1− ε)-PO).



14 Benadè, Halpern and Psomas: Dynamic Fair Division with Partial Information

Theorem 2. In the i.i.d. model, Algorithm 1 achieves envy-freeness and a (1−ε) approximation

to welfare, with probability 1− exp
󰀃
−Ω(T 1/10)

󰀄
, for all ε> 0.

Algorithm 1 works in epochs: each epoch k has an exploration/sampling phase, where each agent

i receives a pre-determined set of items, denoted Gk
i , irrespective of their valuation. This is followed

by an exploitation/ranking phase, where each item is given to the agent with the highest empirical

quantile (with respect to items received in the preceding exploration phase, i.e. Gk
i ).

Algorithm 1: EF + (1− ε)-Welfare

for epoch k= 1 . . . do
Sampling Phase: (n · k4 items)

Give the j-th item in this phase to agent j(mod n).

Ranking Phase: (k8 items)

for each item g in this phase do
Elicit σ−1

i (Gk
i ∪ {g}, g) for all i∈N .

Allocate g to an agent j ∈ argmini∈N σ−1
i (Gk

i ∪ {g}, g).

We start with a technical lemma, which gives us a bound on the length of the exploration period

we need in each epoch. The following definition will be useful.

Definition 2. A sample of n ·m items (where each agent is allocated exactly m items) is ε-

accurate if, with probability at least 1− ε, the relative rank of a fresh item (with respect to the

sample) is highest for the agent with highest quantile value.

Lemma 4. If ε, δ ∈ (0,1), and m ∈ Z+ are such that ε> 2n
󰁴

ln(2n/δ)

2m
, then giving m samples to

each agent is ε-accurate with probability at least 1− δ.

Proof. We will use the Dvoretzky–Kiefer–Wolfowitz (DKW) inequality (Dvoretzky et al. 1956,

Massart 1990) to show the empirical CDF of sampled quantiles is reasonably close to a uniform

distribution with probability 1− δ. We then show this is sufficient to guarantee ε-accuracy for the

chosen ε. Let F̂i be the empirical CDF of the sampled quantiles for agent i, i.e., F̂i(q) for q ∈ [0,1]

is a random variable that describes the proportion of sampled items with quantile at most q. Note

that F̂i exactly captures agent i’s ranking for a new item: if a fresh item has quantile qi for agent

i and qj for agent j, then i ranks it higher than j exactly when F̂i(qi)> F̂j(qj).

Noting that the CDF for the actual quantile distribution (i.e., the uniform distribution) is the

identity on [0,1], the DKW inequality states that for all γ > 0, Pr
󰁫
supq∈[0,1] |F̂i(q)− q|> γ

󰁬
≤

2e−2mγ2
. We want this condition to hold for all n agents, simultaneously, with probability at least
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1− δ, so we pick γ such that 2e−2mγ2 ≤ δ/n and apply a union bound; it suffices to choose γ =󰁴
ln(2n/δ)

2m
.

We now show that the DKW condition (supq∈[0,1] |F̂i(q)− q| ≤ γ) being satisfied for all agents

i is sufficient to guarantee ε-accuracy. Consider sampling quantiles Q1, . . . ,Qn for a fresh item.

Let imax ∈ argmaxi∈N Qi be a quantile-maximizing agent (technically a random variable). Our

goal is to show that with probability at least 1− ε (with respect to the samples of Q1, . . . ,Qn)

F̂imax(Qimax)> F̂j(Qj) for all j ∕= imax. This ensures that imax has the highest empirical rank, and

hence receives the item. Let Q(1), . . . ,Q(n) be the respective order statistics. A key observation is

that Q(n)−Q(n−1) ∼Beta[1, n] (Gentle 2019). The PDF of a Beta[1, n] distribution is f(x) = nxn−1

for x ∈ [0,1]. Since f(x)≤ n, Pr
󰀅
Q(n) −Q(n−1) < ρ

󰀆
<nρ for all ρ> 0. Plugging in ρ= 2γ, we have

Pr
󰀅
Q(n) −Q(n−1) ≤ 2γ

󰀆
< 2nγ. We will show that as long as ε > 2nγ, ε-accuracy holds. First, we

have Pr
󰀅
Q(n) −Q(n−1) > 2γ

󰀆
> 1− ε. Conditioned on Q(n) −Q(n−1) > 2γ, the item is given to imax.

To see why, observe Qimax =Q(n) and Qj ≤Q(n−1) for all j ∕= imax, by definition. Using the DKW

inequality condition, it follows that F̂imax(Qimax)≥Qimax − γ >Qj + γ ≥ F̂j(Qj). We conclude that

for ε> 2n
󰁴

ln(2n/δ)

2m
, ε-accuracy is satisfied with probability at least 1− δ. □

Using Lemma 4, we can get, for each epoch, a bound on the number of decisions where Algo-

rithm 1 differs from the quantile maximization algorithm.

Lemma 5. The allocation of Algorithm 1 differs from that of the quantile maximization algorithm

after T steps by at most f(T ) items with probability 1− exp
󰀃
−Ω(T 1/10)

󰀄
, where f(T )∈O(T 15/16).

Proof. We start by bounding the accuracy of Algorithm 1 in each epoch k. In epoch k, each

agent receives k4 items during the sampling phase. We claim that the sample in epoch k for k≥ 3n

is εk-accurate for εk := 3n/k3/2 with probability at least 1− δk, for δk := 2n/e2k. Indeed, first note

that by the choice of k, we have that εk, δk ∈ (0,1). Hence, we just need to show that these values

satisfy the inequality of Lemma 4. We have that

εk =
3n

k3/2
>

2n

k3/2
= 2n

󰁵
1

k3
= 2n

󰁵
ln(e2k)

2k4
= 2n

󰁵
ln(2n/δk)

2k4
.

Next, fix a time T . Slightly abusing notation, let k(t) = min{K ∈ N|
󰁓K

k=1 nk
4 + k8 ≥ t} be the

function that given an item t returns the epoch item t is in. Notice that T ≥
󰁓k(T )−1

k=1 nk4 + k8 ≥
(k(T )− 1)8, and therefore k(T )≤ 2T 1/8. In any run of the algorithm, we can classify every item

t≤ T into at least one of the following five categories.

1. Item t was allocated in one of the first 3n− 1 epochs, that is, k(t)< 3n.

2. Item t was allocated in one of the first ⌊T 1/10⌋ epochs, that is, k(t)≤ ⌊T 1/10⌋.
3. Item t was allocated in the sampling phase of epoch k(t)≥ 3n.

4. Item t was allocated in the ranking phase of epoch k(t)≥ 3n; the epoch was εk(t)-accurate.
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5. Item t was allocated in the ranking phase of epoch k(t)≥ ⌊T 1/10⌋+1; the epoch was not εk(t)-

accurate.

We say an item t was a mistake if it was given to an agent with a non-maximum quantile

for it. We show that the numbers of mistakes in each category are bounded by 310n9, T 1/2n +

T 9/10,2nT 5/8,9nT 15/16, and 0, with probabilities 1,1,1,1−exp
󰀃
−Ω(T 7/8)

󰀄
, and 1−exp

󰀃
−Ω(T 1/10)

󰀄
,

respectively. This implies that the total number of mistakes is at most the sum of these quantities,

which is O(T 15/16), with probability 1− exp
󰀃
−Ω(T 1/10)

󰀄
, via a union bound.

The number of items in the first category is at most

3n−1󰁛

k=1

k4n+ k8 ≤
3n󰁛

k=1

(3n)4n+(3n)8 ≤ (3n)5n+(3n)9 ≤ 310n9.

Hence, the number of mistakes in the first category is also at most 310n9.

For the second category, a similar computation gives a bound of

⌊T1/10⌋󰁛

k=1

k4n+ k8 ≤ ⌊T 1/10⌋ · (⌊T 1/10⌋4n+ ⌊T 1/10⌋8)≤ T 1/2n+T 9/10.

For the third category, since k(T )≤ 2T 1/8, we have that the total number of items in the sampling

phase is (with probability 1) upper bounded by

k(T )󰁛

k=1

nk4 ≤ nk(T )5 ≤ 2nT 5/8.

Each item t in the fourth category has probability εk(t) of being a mistake. The expected num-

ber of mistakes is therefore at most
󰁓k(T )

k=3n εkk
8 =

󰁓k(T )

k=3n 3nk
13/2 ≤ 3nk(T )15/2 ≤ 8nT 15/16. Using

Hoeffding’s inequality we get that the number of mistakes is at most (8n+1)T 15/16, since a devia-

tion of T 15/16 occurs with probability at most exp
󰀃
−2T 15/8/T

󰀄
= exp

󰀃
−2T 7/8

󰀄
.

For the fifth category, we will union bound over the probability that any epoch k≥ T 1/10 is not

εk-accurate. This probability is at most

∞󰁛

k=⌊T1/10⌋+1

δk =
∞󰁛

k=⌊T1/10⌋+1

2n/e2k ≤ 2n exp
󰀃
−2T 1/10

󰀄
· 1

1− 1/e2
≤ 3n exp

󰀃
−2T 1/10

󰀄
.

Hence, with probability at least 1− 3n exp
󰀃
−2T 1/10

󰀄
, there will be 0 items in this category. □

Finally, we can prove Theorem 2 as a relatively straightforward consequence of Lemma 5, since

the ideal quantile maximization algorithm satisfies nice properties (e.g., Lemma 1).

Proof of Theorem 2 Fix a distribution D with CDF F and let V be a random variable with

distribution D. Fix some ε to be (1−ε)-welfare-maximizing. Let ET
1 be the event that the maximum

social welfare at time T is at least 1/2 ·E[V ] · T , let ET
2 be the event that quantile maximization
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is c-strongly-EF for c= (E[V | F (V )≥1/2]−E[V ])

4n
, and let ET

3 be the event that Algorithm 1 differs from

quantile maximization on at most f(T ) items from Lemma 5. We first claim that ET
1 ∩ ET

2 ∩ ET
3

occurs with probability 1− exp
󰀃
−Ω(T 1/10)

󰀄
. Note that Lemmas 1 and 5 tell us ET

2 and ET
3 each

occur with probability 1−exp(−Ω(T )) and 1−exp
󰀃
−Ω(T 1/10)

󰀄
, respectively. For ET

1 , the maximum

value for each item is in expectation at least the expected value for a single agent E[V ]. Hence, a

Chernoff bound tells us ET
1 occurs with probability at least 1− exp

󰀓
−E[V ]T

8

󰀔
. The claim holds via

a union bound.

Next, note that for sufficiently large T , since f(T ) ∈ o(T ), f(T ) ≤ (E[V | F (V )≥1/2]−E[V ])

8n
· T and

f(T ) ≤ ε/2 · E[V ] · T (for any fixed ε that does not depend on T ). Fix such a sufficiently large

T . We show that, conditioned on ET
1 ∩ ET

2 ∩ ET
3 , both EF and (1 − ε)-welfare hold. Let AQM =

(AQM
1 , . . . ,AQM

n ) be the allocation of quantile maximization and A= (A1, . . . ,An) be the allocation

of Algorithm 1. Beginning with envy-freeness, we have that for all pairs of agents i and j,

vi(Ai)≥(ET
3 ) vi(A

QM
i )− f(T )

≥(ET
2 ) vi(A

QM
j )− f(T )+

(E[V | F (V )≥ 1/2]−E[V ])T

4n

≥(ET
3 ) vi(Aj)− 2f(T )+

(E[V | F (V )≥ 1/2]−E[V ])T

4n

≥ vi(Aj),

so the allocation is envy-free. Further, noting that sw(AQM) is the maximum social welfare, we

have the welfare approximation is at least

sw(A)

sw(AQM)
=

sw(AQM)− (sw(AQM)− sw(A))

sw(AQM)

≥(ET
3 ) sw(A

QM)− f(T )

sw(AQM)

= 1− f(T )

sw(AQM)

≥(ET
1 ) 1− f(T )

1/2 ·E[V ] ·T

≥(ET
3 ) 1− ε/2 ·E[V ] ·T

1/2 ·E[V ] ·T
= 1− ε,

as needed. □

5. Bounded memory in the i.i.d. model

In this section, we are interested in the more ambitious problem of designing dynamic algorithms

with even more limited partial information: each agent is allowed to “remember” only a single

item. We first show that, in this case, we need to settle for constant approximations of welfare.
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Theorem 3. In the i.i.d. model, given a memory of one item per agent, there is no algorithm

A that is .999-welfare maximizing with high probability for all continuous and bounded value dis-

tributions.

Proof We prove that this negative result holds even for an even stronger class of algorithms in

which, at each step t, the algorithm selects quantile thresholds qt1, . . . , q
t
n ∈ [0,1] for each agent, and

once an item arrives the algorithm observes, for each agent, whether the quantile of their sampled

value Qi,t is above or below the threshold qti . Note that this provides at least as much information

about the fresh item as comparing it to any single prior item, since there is some uncertainty about

the values and quantiles of all prior items.

We first focus on the algorithm for a single time-step and show there is a distribution of values

such that, regardless of the quantile thresholds selected and allocations made, it cannot do well.

Fix a number of agents n and assume n ≥ 3. We handle the special case of n = 2 at the end

of this proof, as it requires a different distribution. For simplicity we consider a distribution that

takes values larger than 1; re-scaling (specifically, dividing all values by 2+ ε) gives a distribution

upped bounded by 1 and does not affect any of our arguments. Consider the value distribution V ,

with

V ∼

󰀻
󰁁󰀿

󰁁󰀽

Unif[0,ε] with probability 1− 1
n
,

Unif[1,1+ ε] with probability 2
3n
,and

Unif[2,2+ ε] with probability 1
3n

for some small ε> 0 to be fixed later. Intuitively, V is a continuous version of a discrete distribution

which takes low value (near 0) with probability 1− 1
n
, medium value (near 1) with probability 2

3n
,

and high value (near 2) with probability 1
3n
. Let FV be its CDF. Trivially, the maximum social

welfare of T items when all agents have this value distribution is at most T · (2+ ε).

We show that regardless of what quantile thresholds the algorithm chooses at step t and which

decision it makes given the resulting signals, the expected value of the agent receiving item t is

at least (1 − ε) · 1
144e

away from optimal. To that end, fix arbitrary thresholds q1, . . . , qn. First,

we partition the agents depending on whether their quantile qi is above or below 1− 2n
3
. We let

Nbelow = { i∈ [n] | qi < 1− 2n
3
} and N above = { i∈ [n] | qi ≥ 1− 2n

3
}. Either |Nbelow| ≥ ⌈n/2⌉ or

|N above|≥ ⌈n/2⌉; we analyse each case separately. Since n≥ 3, we have ⌈n/2⌉ ≥ 2.

Case I: |N below|≥ ⌈n/2⌉. In this case, it will be difficult for the algorithm to distinguish between

agents in Nbelow with medium value and those with high value. Consider the event E that one

agent imax ∈Nbelow has quantile Qimax > 1− 1
3n
, one agent ismax ∈Nbelow has quantile Qismax ∈ (1−

2
3n
,1− 1

3n
), and all other agents i∈N \{ imax, ismax } have quantile Qi < 1− 1

n
. First, we show that

Pr[E ]≥ 1
72e

, a constant. To compute this probability, note that there are at least ⌈n/2⌉ · (⌈n/2⌉−1)
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choices of imax and ismax. Once these have been selected, the probability of E occurring for this pair

of agents is
1

3n
· 1

3n
·
󰀕
1− 1

n

󰀖n−2

≥(n≥3) 1

9n2

󰀕
1− 1

n

󰀖n−1

≥ 1

9en2
.

Since ⌈n/2⌉ · (⌈n/2⌉ − 1) ≥ n2/8, we can that conclude Pr[E ] ≥ 1
72e

. Conditioned on E occurring,

imax has high value, ismax has medium value, and all other agents have low value. However, from the

perspective of the algorithm, two agents (imax and ismax) give a high signal, and it’s equally likely

that each of them is the agent with the high value (note that we condition on E). The algorithm

must therefore allocate the item to an agent with at most medium value (upper bounded by 1+ ε)

with probability at least 1/2, even though an agent with value at least 2 exists. Hence, in this

timestep, the algorithm has an additive error (compared to the optimum welfare) of at least (1−ε)

with probability at least 1
144e

.

Case II: |Nabove|≥ ⌈n/2⌉. In this case, it will be difficult for the algorithm to distinguish between

agents in N above that have medium value and those with low value. Consider the event E that one

agent imax ∈N above has quantile Qimax ∈ (1− 1
n
,1− 2

3n
) and all other agents i ∈N \ { imax } have

quantile Qi < 1− 1
n
. First, we show that Pr[E ]≥ 1

6e
. Indeed, there are at least n/2 choices for imax.

For a fixed choice of imax, the probability of E occurring is 1
3n

·
󰀃
1− 1

n

󰀄n−1 ≥ 1
3en

, and there are

at least n/2 choices for imax, so Pr[E ] ≥ 1
6e
. Agent imax and the other members of N above (there

is at least one more) are indistinguishable to the algorithm as they all have a low signal, so the

algorithm must give it to an agent with value at most ε with probability at least 1/2 even though

an agent with value at least 1 exists. Hence, in this timestep, the algorithm has an additive error

(compared to the optimum welfare) of at least (1− ε) with probability at least 1
12e

.

In either case, for every time step, the algorithm has an additive error of at least (1−ε) with prob-

ability at least 1
144e

, irrespective of the past allocations. As time steps are independent, standard

tail bounds give that, for sufficiently small ε> 0, the error is at least 1−ε
1000

T with high probability.

The optimal social welfare is at most (2+ ε) · T ; we conclude the algorithm can be no more than

an 0.999−approximation to welfare.

The case of two agents. Finally, we handle the case of two agents. Assume values are drawn

from a Unif[0,1] distribution. Let q1, q2 be the quantile thresholds selected by the algorithm and,

without loss of generality, suppose that 0≤ q1 ≤ q2 ≤ 1. At least one of the differences q1 − 0, q2 −

q1,1−q2 must be at least 1/3. Suppose q2−q1 ≥ 1/3 (the other cases are symmetric). We investigate

the event that both agents have Qi ∈ [q1, q2], so that agent 1 signals high and agent 2 signals low,

which occurs with probability at least 1/9. Conditioned on this event, the signals do not provide

any additional information, so the algorithm chooses the agent with smaller value at least half of

the time. In this case, the expected difference between the larger and smaller values is 1/9. Hence,
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Algorithm 2: Bounded Memory

for Epoch k= 1 . . . do
Sampling Phase: (k9 items)

NotWithinError←N

for trial= 1, . . . , k3 do
for i∈NotWithinError do

Allocate the next item to agent i, and update her memory

Test k6 − |NotWithinError| number of items (for each agent)

for i∈NotWithinError do
if Proportion of test items for agent i is within ±1/k2 of (n− 1)/n then

NotWithinError←NotWithinError \ { i}
Ranking Phase: (k18 items)

for each item g in this phase do
if Some agent i has high signal then

Give g to a (uniformly) random such agent

else
Give g to an agent uniformly at random

the expected difference of the value from the algorithm versus the maximum social welfare is at

least 1
9
· 1
2
· 1
9
= 1/162 on each item. The maximum social welfare is at most T , and we expect the

difference to be at least T/1000 due to concentration, so the algorithm cannot guarantee more than

a .999 approximation, as needed. □
Our positive result matches this lower bound up to a constant.

Theorem 4. In the i.i.d. model, given a memory of one item per agent, Algorithm 2 achieves

envy-freeness and a 1− 1/e− ε approximation to welfare, with probability 1− exp
󰀃
−Ω(T 1/20)

󰀄
, for

all ε> 0.

Algorithm 2 works in epochs, similar to Algorithm 1. In each epoch’s exploration/sampling phase,

it tries to find an item whose quantile is close to the n−1
n

-threshold algorithm. Epoch k makes

k3 such attempts, and each candidate item is tested against k6 fresh items to get an estimated

quantile. If everything is within the error we can tolerate, the algorithm remembers this item for

this epoch; otherwise, the agent has an arbitrary item in memory during this epoch. During the

exploitation/ranking phase, Algorithm 2 tries to mimic the n−1
n

-threshold algorithm (instead of

the quantile maximization algorithm as Algorithm 1 did), and, in fact, inherits its approximation

factor (Lemma 2) exactly.

Our first technical lemma, Lemma 6, gives necessary bounds on the various variables of Algo-

rithm 2 for a sample to be ε-accurate with respect to the ideal threshold algorithm; see Definition 3.

Its proof can be found in Section EC.1.2.
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Definition 3. A set of n items in memory, one for each agent, is ε-accurate with respect to q∗

if with probability at least 1−ε, when a fresh item is sampled, the agents with true quantile above

q∗ are exactly those that value the fresh item more than their item in memory.

Lemma 6. For all ε, δ ∈ (0,1), if (1) at least τ trials are done with τ ≥ ln(2n/δ)

ε/(3n)
, and (2) at least

ℓ test items are used per trial for ℓ≥ 18n2

ε2
ln
󰀃
4τn
δ

󰀄
, and (3) the tolerance for accepting an item is

ε/(3n), then the items in memory are ε-accurate (for all agents, simultaneously) with respect to

q∗ = n−1
n

, with probability at least 1− δ.

Though Lemmas 4 and 6 resemble each other (and are used in analogous ways), the proofs require

different techniques, as the sampling processes are very different. Next, we prove an analogue to

Lemma 5: the number of disagreements between Algorithm 2 and the ideal threshold algorithm is

sublinear. The proofs of Lemmas 5 and 7 are similar, precisely because Lemma 4 matches Lemma 6.

Theorem 4 follows from Lemma 7 as in the i.i.d. case. The proofs of Lemma 7 and Theorem 4 can

be found in Sections EC.1.3 and EC.1.4 respectively.

Lemma 7. The allocation of Algorithm 2 differs from that of the n−1
n

-threshold algorithm after

T steps by at most f(T ) items with probability 1− exp
󰀃
−Ω(T 1/20)

󰀄
, where f(T )∈O(T 19/20).

6. Agents with correlated values

Recall that vi,t = vcomt +εi,t, with common value vcomt drawn from a common distribution Dcom and

agent specific noise εi,t drawn from noise distribution Dnoise. This class of valuations was captured

in a more general class considered by Dickerson et al. (2014), who show that welfare maximization

is still EF with high probability (and, by definition, a 1-approximation to welfare). However, it is

unclear whether these results carry over when only given partial information since the correlation

can make it harder to “learn” agents’ relative values during sampling.

In this section we show that, at least under mild restrictions on Dcom and Dnoise, we can still

devise algorithms that are able to well-approximate the ideal welfare maximizing algorithm. The

restrictions are as follows: (i) Interval support : the support of each of these distributions are some

intervals [acom, bcom] and [anoise, bnoise]. (ii) PDF-boundedness: there are constants 0 < p ≤ q such

that the probability density functions of Dcom and Dnoise are bounded between p and q on their

support. These assumptions are required only in this section and are quite common in the distribu-

tional fair division literature — they are the exact assumptions of Bai and Gölz (2022) and weaker

than the those of Manurangsi and Suksompong (2021), who also require the support to be [0,1].

We call this method of generating values the common-noise model and establish the following.

Theorem 5. In the common-noise model, running Algorithm 1 with sampling phases per agent

of length k6 and exploiting phases of length k12 achieves envy-freeness and a (1− ε) approximation

to welfare with probability 1− exp
󰀃
−Ω(T 1/14)

󰀄
, for all ε> 0.
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The proof of this theorem is similar to that of Theorem 2. The main difference is that Lemma 4 is

not valid for correlated values. Nonetheless, using new techniques, we show the following analog.

Lemma 8. For all (p, q)-bounded common and noise distributions Dcom and Dnoise supported on

[acom, bcom] and [anoise, bnoise], if ε, δ ∈ (0,1) and m∈Z+ are such that

ε>
2nq

min
󰀓

bcom−acom

bnoise−anoise ,1
󰀔
· p

·
󰀕
ln(2n/δ)

2m

󰀖1/4

,

then giving m samples to each agent is ε-accurate with probability at least 1− δ.

Proof. It is without loss of generality to assume that the supports of Dcom and Dnoise are

translated to start at 0, i.e., are of the form [0, bcom−acom] and [0, bnoise−anoise]. Indeed, translating

the values does not change whether or not an item goes to the correct agent. For convenience we

assume the supports are [0, bcom] and [0, bnoise] throughout the proof, then translate the distributions

back for the final bound by replacing bcom by bcom − acom and bnoise by bnoise − anoise

Let Dsum be the distribution obtained by adding independent samples from Dcom and Dnoise.

Note that Dsum is the marginal distribution of agent values. Let F com, F noise, and F sum and

f com, fnoise, and f sum be the CDFs and PDFs of the distributions Dcom,Dnoise, and Dsum, respec-

tively. Additionally, since Dsum is the sum of independent samples of Dcom and Dnoise, it is well

known that f sum(x) =
󰁕∞
−∞ f com(t)fnoise(x− t)dt, the convolution of the summand densities. Let

F̂i be the empirical CDF of agent i’s values after m samples. (Note that unlike in Lemma 4, we are

working with values instead of quantiles.) Using the DKW inequality, it is still the case that for all

γ > 0, Pr
󰁫
supv |F̂i(v)−F sum(v)|> γ

󰁬
≤ 2e−2mγ2

, and specifically for γ =
󰁴

ln(2n/δ)

2m
, this holds for

all n agents simultaneously with probability 1− δ.

We again condition on the DKW event, that supv |F̂i(v)−F sum(v)|> γ for all agents i. Let V com

and V noise
1 , . . . , V noise

n be fresh samples of common and noise values. Let Vi = V com +V noise
i be the

total value of each agent i. We would like to show that if imax is the agent with the highest value,

then F̂imax(Vimax)> F̂j(Vj) for all j ∕= imax. This ensures that imax receives the item. A sufficient

condition for this to occur is that F sum(Vimax)− F sum(Vj) > 2γ for all j ∕= imax, because of the

DKW condition.

To get a handle on conditions to ensure this difference in quantiles is sufficiently large, we will

begin by proving the following inequality.

Lemma 9. For all v2 ≥ v1 ∈ [0, bcom + bnoise] such that v2 − v1 ≤ bnoise,

F sum(v2)−F sum(v1)≥
󰀕
min

󰀕
bcom

bnoise
,1

󰀖
p(v2 − v1)

󰀖2

/2. (1)
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Figure 1 Plot of lower bound g(x).

Proof of Lemma 9. Fix such a v1 and v2. Writing this out more explicitly, we have that

F sum(v2)−F sum(v1) =

󰁝 v2

v1

f sum(x)dx.

To lower bound this integral, we will first lower bound f sum(x). Fix an x in the support of Dcom,

so x∈ [0, bcom + bnoise]. We have that

f sum(x) =

󰁝 ∞

−∞
f com(t)fnoise(x− t)dt

≥
󰁝 ∞

−∞
(p · I[t∈ [0, bcom]]) · (p · I[x− t∈ [0, bnoise]])dt

=

󰁝 ∞

−∞
(p · I[t∈ [0, bcom]]) · (p · I[t∈ [x− bnoise, x]])dt

= p2
󰁝 ∞

−∞
I
󰀅
t∈ [0, bcom]∧ t∈ [x− bnoise, x]

󰀆
dt.

Since 0≤ x≤ bcom+bnoise, rearranging shows that x−bnoise ≤ bcom, and (trivially), x≥ 0. Therefore,

t∈ [0, bcom]∧ t∈ [x− bnoise, x] reduces to t∈ [max(0, x− bnoise),min(bcom, x)], and hence

󰁝 ∞

−∞
I
󰀅
t∈ [0, bcom]∧ t∈ [x− bnoise, x]

󰀆
dt=min(bcom, x)−max(0, x− bnoise)

=min(bcom, x)+min(0, bnoise −x)

=min(bcom, bnoise, x, (bnoise + bcom)−x).

Putting this together, we have that for x∈ supp(Dsum),

f sum(x)≥ p2min(bcom, bnoise, x, (bnoise + bcom)−x).

Let g(x) = p2min(bcom, bnoise, x, (bnoise + bcom)− x) and let us now consider the shape of g(x).

A plot of g(x) can be found in Figure 1. It increases linearly (with a slope of p2) from 0 until

min(bcom, bnoise), stays constant until max(bcom, bnoise), and then decreases (with a slope of −p2)

until bcom + bnoise. Note that both the nonconstant intervals are of length min(bcom, bnoise). For
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our purposes, the shape of g(x) means that integrating over any interval [c, d] ⊆ [0, bcom + bnoise]

of length ℓ := d− c is at least as large as integrating [0, ℓ], i.e.,
󰁕 d

c
g(x)dx≥

󰁕 ℓ

0
g(x)dx. Further, as

long as ℓ≤min(bcom, bnoise), the area under the curve of g(x) on this interval is simply a triangle,

and it has area p2ℓ2/2. These facts together imply that as long as v2 − v1 ≤min(bcom, bnoise), then

F sum(v2)−F sum(v1)≥ (p(v2 − v1))
2/2. (2)

To extend this to the case needed for Inequality (1) with the only constraint being v2− v1 ≤ bnoise,

let v′2 = v1 +(v2 − v1) ·min
󰀃

bcom

bnoise ,1
󰀄
. Note that v′2 ≤ v2, and, in addition,

v′2 − v1 ≤min

󰀕
bcom

bnoise
,1

󰀖
(v2 − v1)≤min(bcom, bnoise).

It follows from Ineq. (2), v′2 ≤ v2 and the definition of v′2 that, as required,

F sum(v2)−F sum(v1)≥ F sum(v′2)−F sum(v1)≥ p2(v′2−v1)
2/2 =

󰀕
min

󰀕
bcom

bnoise
,1

󰀖
p(v2 − v1)

󰀖2

/2. □

Having established Lemma 9, we continue with the proof of Lemma 8 and now consider what

constraints on Vimax and Vj ensure that F sum(Vimax) − F sum(Vj) ≥ 2γ for all j ∕= imax. Since

Vimax and Vj can differ by at most bnoise, we immediately get that F sum(Vimax) − F sum(Vj) ≥
󰀃
min

󰀃
bcom

bnoise ,1
󰀄
p(Vimax −Vj)

󰀄2
/2. A sufficient condition for this to be at least 2γ is that

(Vimax −Vj)
2 ≥ 4γ

(min
󰀃

bcom

bnoise ,1
󰀄
p)2

,

and, equivalently,

Vimax −Vj ≥
2
√
γ

min
󰀃

bcom

bnoise ,1
󰀄
p
.

Recall that Vimax = V com+V noise
imax and Vj = V com+V noise

j , so Vimax −Vj = V noise
imax −V noise

j . Addition-

ally, since fnoise is upperbounded by q,

F noise(V noise
imax )−F noise(V noise

j ) =

󰁝 V noise
imax

V noise
j

fnoise(x)dx≤ q(V noise
imax −V noise

j ).

Hence, as long as F noise(V noise
imax )−F noise(V noise

j )≥ 2q
√
γ

min
󰀓

bcom

bnoise ,1
󰀔
p
, then V noise

imax −V noise
j ≥ 2

√
γ

min
󰀓

bcom

bnoise ,1
󰀔
p
.

F noise(V noise
j ) is distributed uniformly on [0,1] for each i, and these random variables are inde-

pendent across agents. F noise(V noise
imax ) will be the largest of n such draws. Hence, we have reduced

this to the case handled by Lemma 4 — the Beta[1, n] analysis from that lemma shows that

Pr
󰀅
∀j ∕= imax, F noise(V noise

imax )−F noise(V noise
j )> ρ

󰀆
≥ 1 − nρ. Plugging in ρ =

2q
√
γ

min
󰀓

bcom

bnoise ,1
󰀔
p
, we get

that this holds with probability at least 1− 2nq
√
γ

min
󰀓

bcom

bnoise ,1
󰀔
p
. Therefore, as long as ε> 2nq

min
󰀓

bcom

bnoise ,1
󰀔
p
·

󰀓
ln(2n/δ)

2m

󰀔1/4

, ε-accuracy holds. □
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We are now in position to prove Theorem 5. The proof structure is nearly identical to Theorem 2,

we give an overall sketch and describe the differences.

Proof sketch of Theorem 5. Fix (p, q)-bounded distributions Dcom and Dnoise supported on

[acom, bcom] and [anoise, bnoise]. The proof is nearly identical to Theorem 2, we primarily describe

the differences here, while giving an overall sketch.

An analog of Lemma 1 continues to hold, with slightly different constants that depend on the

distribution. Hence, all we need to show is that running Algorithm 1 with a sampling length of

k6 per agent and an exploiting length of k12 differs from value maximization by at most some

sublinear number of items with probability 1− exp
󰀃
−Ω(T 1/14)

󰀄
. We will show there are O(T 47/48)

errors; note the asymptotic notation is hiding constants that depend on n and the common and

noise distributions.

Let C = 3nq

min

󰀕
bcom−acom

bnoise−anoise ,1

󰀖
p
. For each epoch k, choose δk = 2n/e2k and set εk =C · k−5/4. Now

εk =C · k−5/4 =C ·
󰀕

2k

2k6

󰀖1/4

=C ·
󰀕
ln(e2k)

2k6

󰀖1/4

>
2nq

min
󰀃

bcom

bnoise ,1
󰀄
p
·
󰀕
ln(2n/δk)

2k6

󰀖1/4

.

The constant C is unimportant, as it does not depend on T or k it will disappear as the timestep

grows large. The primary difference to Theorem 2 is that, due to the longer phase lengths (k6 and

k12 instead of k4 and k8), we need a dependence of k−5/4 for εk (rather than k−3/2), and use T 1/14

instead of T 1/10.

We count the number of items on which Algorithm 1 differs from the welfare-maximizing algo-

rithm, as in Lemma 5, and recall that k(t) is the epoch in which item t arrives. Fix a timestep T .

Due to the different sampling lengths, it now holds that k(T )≤ 2T 1/12.

We now count the number in the first ⌊T 1/14⌋ instead of ⌊T 1/10⌋ and get

k(T )󰁛

k=1

nk6 + k12 ≤ nT 1/2 +T 13/14.

The number of items allocated in sampling phases is now

k(T )󰁛

k=1

nk6 ≤ nk(T )7 ≤ 2nT 7/12,

which is still sublinear (with probability one).

The expected number mistakes in exploit phases of εk(t)-accurate epochs is at most

k(T )󰁛

k=1

εkk
12 =

k(T )󰁛

k=1

Ck43/4 =Ck(T )47/4 =O(T 47/48).
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Due to Hoeffding’s inequality a deviation of more than T 47/48 does not occur with probability 1−

exp
󰀃
−Ω(T 47/48)

󰀄
, so the number of mistakes here is O(T 47/48) with the corresponding probability.

Union bounding over the number of items in non-εk-accurate exploit phases is again at most

∞󰁛

k=⌊T1/14⌋+1

δk ≤ 2n
∞󰁛

k=⌊T1/14⌋+1

2n

e2k
= exp

󰀃
−Ω(T 1/14)

󰀄
.

With these modifications, the rest of Theorem 2 goes through essentially unchanged. □

6.1. Correlated values with bounded memory

One may wonder if these positive results for Algorithm 1 also carry over using bounded memory,

i.e., could some modification of Algorithm 2 perform well in the common-noise noise model? The

answer comes down to what guarantees we would like.

Achieving envy-freeness is relatively straightforward. Indeed, any q-threshold algorithm achieves

envy-freeness as long as, with positive probability, some agents are above the threshold and some

below: by symmetry, all agents have an equal chance of receiving each item, and their value con-

ditioned on receiving an item is strictly higher than their value conditioned on not receiving it.

All thresholds satisfy this property assuming interval support on the distributions, and minimal

modification to the proof of Theorem 4 is required to show Algorithm 2 is envy-free.

Getting a welfare guarantee appears to be more challenging. There exist distributions where

the n−1
n

-threshold algorithm does not achieve a constant approximation. For example, consider

a common distribution that takes value n with probability 2/n and 0 otherwise, and a noise

distribution that takes value n− 1 with probability 1/n and 0 otherwise. The n−1
n

quantile is at

least n. However, this implies that whether a value is above the threshold is completely determined

by the common draw. Therefore, either all agents are above the threshold or all are below, so

items will be given to random agents. Random agents have an expected value at most 3. On the

other hand, the expected maximum of n draws from the noise distribution is Θ(n). This example

can be extended to have continuous distributions (by slightly spreading out the mass around the

points) and to interval support (draw uniformly from [0, n] with some tiny probability). Given

the connection between threshold algorithms and prophet inequalities, we could hope to import

results from threshold algorithms for correlated distributions (for example, from Immorlica et al.

(2020)). Unfortunately, all existing results require knowing the distribution (e.g., set a threshold

of E[maxi Vi]/2]). This conflicts with a fundamental feature of our algorithms: they do not need to

know anything about exact values or underlying distributions, just ordinal relationships. Of course,

our setup is not as general as theirs, and hence, with new techniques, positive results might be

possible. We leave this as an interesting direction for future work.
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7. The non-i.i.d. model

In this section, we study the non-i.i.d. model. We first establish a strong lower bound for the

non-i.i.d. model. The following negative result holds even for algorithms that know the associated

quantile for every fresh item.

Theorem 6. Even for 2 non-identical agents, there is no algorithm that is EF and c-PO with

probability p, for c > 1+
√
5

4
≈ .809 and p > 2/3, for all continuous and bounded value distributions.

Proof. Suppose for contradiction that there is an algorithmA so that for all bounded continuous

distributions (V1, V2) there exists a T ∗ = T ∗(V1, V2) where for all t≥ T ∗, A is envy-free and c-PO

with probability p with p > 2/3 for some constant c > 1+
√
5

4
. Hence, there is some ε such that

p > 2/3+ ε and 1/c < 4
1+

√
5
− ε=

√
5− 1− ε.

Consider two distributions DF and DS; we describe these later in the proof. Consider the three

instances I0 = (DF ,DF ), I1 = (DS,DF ) and I2 = (DF ,DS).

Let EA,t
j be the event that A is envy-free and c-PO on instance Ij at time t for j ∈ {0,1,2}. By

construction, Pr
󰀅
EA,t
j

󰀆
≥ 2/3+ ε for all j ∈ {0,1,2} and t≥ T ∗.

Let z be a parameter we will fix later in the proof, and let Zt
i = I{Qi,t ≥ 1− z} for i = {1,2}.

Observe that Zt
1 · Zt

2 is 1 with probability z2 and 0 otherwise. The following events charac-

terize a specific notion of a “nice” sample, in which the number of items with high quantiles

for both agents is near its expectation: ET
1 = I{| 1

T

󰁓T

t=1Z
t
1 · Zt

2 − z2| < δ}, ET
2 = I{| 1

T

󰁓T

t=1Z
t
1 −

z| < δ}, and ET
3 = I{| 1

T

󰁓T

t=1Z
t
2 − z| < δ} for some δ > 0. By Hoeffding’s inequality, Pr

󰀅
ĒT
1

󰀆
=

Pr
󰁫
| 1
T

󰁓T

t=1Z
t
1 ·Zt

2 − z2|≥ δ
󰁬
≤ 2exp (−2T δ2) . It follows that for T ≥ log(2/ε)/(2δ2), Pr

󰀅
ĒT
1

󰀆
≤ ε.

Similarly, for T ≥ log(2/ε)/(2δ2), it holds that Pr
󰀅
ĒT
2

󰀆
≤ ε, and Pr

󰀅
ĒT
3

󰀆
≤ ε. Consider an arbitrary

T > Tmax =max{T0, T1, T2, log(2/ε)/(2δ
2)}. Applying a union bound,

Pr
󰀅
ĒA,T
0 ∪ ĒA,T

1 ∪ ĒA,T
2 ∪ ĒT

1 ∪ ĒT
2 ∪ ĒT

3

󰀆
≤

2󰁛

i=0

Pr
󰀅
ĒA,T
i

󰀆
+

3󰁛

i=1

Pr
󰀅
ĒT
i

󰀆
< 3 · (1

3
− ε)+ 3ε= 1.

It follows that Pr
󰀅
EA,T
0 ∩ EA,T

1 ∩ EA,T
2 ∩ ET

1 ∩ ET
2 ∩ ET

3

󰀆
> 0. Therefore, there must exist a sequence

of T items whose quantiles satisfy all of ET
1 , ET

2 , and ET
3 , and, since A does not have access to the

items’ values, there must exist an allocation AT for these T items (in the support of A) that is EF

and c-PO, no matter which of I0, I1 or I2 the values were taken from. Let qT = {(q1(t), q2(t))}Tt=1

be these items’ quantiles. Let HB = {t∈ [T ] : q1(t)≥ 1− z and q2(t)≥ 1− z} be the items for which

Zt
1 ·Zt

2 = 1, and H1 = {t∈ [T ] : q1(t)≥ 1− z} the items for which Zt
1 = 1.

Set distributions DF =Unif[1−w,1] and DS, under which each item is Unif[0,w] with probability

z and at Unif[1−w,1] with probability 1− z, for small positive w that we fix later in the proof.
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We have that some agent receives at most half the items in HB; without loss of generality this

is agent 2, i.e., |AT
2 ∩HB| ≥ |HB|/2. We show that there exists a feasible more than 1/c Pareto-

improvement under the values in I1. To that end, we compare AT to the allocation Â where Â1 =H1

and Â2 = H̄1.

We next bound the utilities of each agent under AT and Â. Beginning with agent 1, we have

u1(Â1) = u1(H1)≥ |H1| · (1−w)

≥(ET
1 ) T · (z− δ)(1−w)

= T (z− δ− zw+ δw)

≥ T (z− δ−w)

and

u1(A1)≤w · |A1 ∩ H̄1|+1 · |A1 ∩H1|

≤ T ·w+ |H1|− |A2 ∩H1|

≤ T ·w+ |H1|− |A2 ∩HB|

≤(ET
2 ) T ·w+T (z+ δ)− |A2 ∩HB|

≤ T ·w+T (z+ δ)− |HB|/2

≤(ET
1 ) T ·w+T (z+ δ)−T (z2 − δ)/2

= T (z− z2/2+w+3δ/2).

Together, these imply

u1(Â1)

u1(AT
1 )

≥ z− δ−w

z− z2/2+w+3δ/2
=

2z− 2δ− 2w

2z− z2 +2w+3δ
.

Next, we consider agent 2. We have

u2(Â2) = u2(H̄1)

≥ (1−w)|H̄1|

= (1−w)(T − |H1|)

≥(ET
2 ) (1−w)T · (1− (z+ δ))

= T (1− z− δ−w+wz+wδ)

≥ T (1− z− δ−w).

By EA
0 , AT is envy-free on I0. It follows that |AT

1 |≥ (1−w)|AT
2 |. Since |AT

1 |+ |AT
2 |= T , we have

that |AT
2 |≤ 1

2−w
T . Hence, u2(A

T
2 )≤ |AT

2 |≤ 1
2−w

T . Combining these, we have

u2(Â2)

u2(AT
2 )

=
1− z− δ−w

1
2−w

= 2− 2z− 2δ− 2w−w+wz+wδ+w2 ≥ 2− 2z− 2δ− 3w.
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Choose z = 3−
√
5

2
. Note that z2 = 7−3

√
5

2
. Choose δ,w < ε/25. We then have,

u1(Â1)

u1(AT
1 )

>
3−

√
5− ε/5

(
√
5− 1)/2+ ε/5

=
3−

√
5

(
√
5− 1)/2+ ε/5

− ε/5

(
√
5− 1)/2+ ε/5

>
3−

√
5

(
√
5− 1)/2+ ε/5

− 2ε

5
(
√
5−1
2

+ ε
5
> 1/2)

>
3−

√
5

(
√
5− 1)/2 · (1+ 2ε/5)

− 2ε

5
(
√
5− 1> 1)

= (
√
5− 1) · 1

1+2ε/5
− 2ε

5

> (
√
5− 1) · (1− 2ε/5)− 2ε

5

> (
√
5− 1)− ε/2− 2ε

5
((
√
5− 1) · 2/5< 1/2)

>
√
5− 1− ε

> 1/c

and
u2(Â2)

u2(AT
2 )

> 2− (3−
√
5)− ε/5>

√
5− 1− ε> 1/c,

so this is more than a 1/c Pareto improvement. □
Algorithms 1 and 2 are envy-free with high probability, even in the non-i.i.d. model, since envy-

freeness is not an “inter-agent” property. Our last result shows that they also give a constant

approximation to Pareto efficiency, by combining Lemma 3 with Lemmas 5 and 7. Its proof can be

found in Section EC.1.5.

Theorem 7. In the non-i.i.d. model, both Algorithm 1 (unbounded memory) and Algorithm 2

(one-item memory) are EF and (1/e − ε)-PO, with probability 1 − exp
󰀃
−Ω(T 1/10)

󰀄
and 1 −

exp
󰀃
−Ω(T 1/20)

󰀄
, respectively, for all ε> 0.

While the formal guarantees in Theorem 7 are similar for the two algorithms despite Algorithm 2

using a memory size of one, Algorithm 1 has the benefit of much shorter epoch lengths (and better

guarantees in the i.i.d. case).

8. Computational study

The purpose of this section is twofold. First, while our theoretical results ensure that algorithms

such as Algorithm 1 satisfy desirable properties, these guarantees are in the only limit, so a priori

it is possible that it may take an extremely long time for them to kick in. With this in mind,

we verify that these properties are satisfied on a variety of generated values, as well as compare
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Figure 2 Density functions of the beta distributions on which we test.

how qualitative shifts in the value distributions affect these convergence rate. Second, although

Algorithm 1 was designed to be ammenable for theoretical analysis, we compare it to variations

that may perform better or be preferable for practical reasons.

8.1. Setup

The experiments are conducted as follows. For each setting, we sample 100,000 item values for five

agents. We run our algorithms on this either two random agents or all five. We repeat this 100

times for each setting so as to get reasonable statistics about the performance.

We generate agent values both from distributions and from real-world data. From distributions,

we first consider several instances of the beta distribution. The first set are of the form β(1, x) and

β(x,1) for different values of x. Recall that β(1,1) is the uniform distribution over [0,1] ans, as x

grows larger, the distributions skews left or right. This allows us to understand the effect of skew

(are there a few items that are extremely valuable, or are most valuable except for a few duds?) on

performance. The next set were of the form β(x,x) for increasing values of x. As x increases, the

distribution becomes more peaked while remaining centered around 1/2. The density functions of

these distributions are visualized in Figure 2.

Next, we investigate the effect of correlation on performance. We generate uniform common

values vt ∼U(0,1) and an agent-specific values εit ∼U(0,1) for each agent i and item t. We then set

the agent value to vit = α ·vt+(1−α)εit. Note that α= 0 corresponds to independent U(0,1) values,

α= 1 corresponds to fully correlated identical values, and increasing α increases the correlation.

Finally, we test on values bid by real food banks on actual donations using artificial currency over

the course of a year, similar to part of what is analyzed in Prendergast (2017, 2022) and Altmann

(2023). We interpret these bids as a proxy for correlated values for each donation. To generate an

instance, we first restrict to sets of 5 food banks that bid together on at least 20 distinct donations.

We sample such a set of 5, treat their bids on a common donation as a correlated value distribution,

and draw all item values from this distribution. A small number of bids (under 4%) are negative

which, in the original context, meant that the organization expected to receive artificial currency

to accept the donation; in our context we interpret these as 0-valued.
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(a) Skewed beta distributions (b) Peaked beta distributions

(c) Correlated uniform distributions (d) Real data

Figure 3 Proportion of envy-free runs on all datasets. For each dataset, the left graphs show the results for

Algorithm 1, while the right shows the performance of the “ideal” welfare maximizing algorithm (or quantile

maximizing in the case of real data where the underlying value distributions are heterogenous).

8.2. Results

All plots that appear in the main body are for experiments run with two agents. Additional plots

with five agents can be found in Appendix EC.2 and are qualitatively similar.

We begin with an analysis on how quickly Algorithm 1 becomes envy-free. The corresponding

plots for Algorithm 1, alongside the ideal welfare maximizing algorithm with full information, can

be found in Figure 3. The main takeaways we find are that the more left skewed distributions

tended to have faster convergence than more right skewed ones, less peaked distributions tended to

converge faster than more peaked ones, and increasing the correlation, of course, made the problem

more difficult. The performance on the real data is very much in line with what is observed for

the simpler (small α) correlated distributions, where envy-freeness takes roughly 1000 time steps

to establish. In general, the Algorithm 1 kept pace reasonably well alongside its “ideal” counter-

part, and did not converge much slower. Instances where Algorithm 1 performed worse exactly

corresponded to those where welfare/quantile maximization also struggled.

Next, we visualize the approximation to welfare in Figure 4. Here we find a complete reversal. Left

skewed distributions had worse approximations than right skewed ones, less peaked distribution

had worse approximations, and increasing correlation lead to better approximations. One possible

explanation is that these trends exactly correspond to the ratio between the expected value of

these distributions and the expected maximum of several draws. When this ratio is large (the

expectation is quite close to the expected maximum) it means that giving an item to the “wrong”
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(a) Skewed distributions (b) Peaked distributions (c) Correlated distributions

Figure 4 95th percentile welfare approximations. In words, if at timestep 1000 the algorithm has ε= .02, then

on 95% of runs, at the thousandth time step, the algorithm achieved at least 98% of the optimal welfare.

(a) Proportion of envy-free runs.

(b) 95th percentile welfare approximations.

Figure 5 Comparison of alternative algorithms in various settings.

agent does not have too big of an effect on the welfare approximation. The one exception to this

is for extremely correlated distributions (α= 0.8) where this improvement is counteracted by the

fact that additional correlation makes it more difficult to learn agents’ values.

Finally, we compare Algorithm 1 to three variants in Figure 5. We first try an algorithm with

shorter epochs: Rather than sampling phases of length k4 and exploiting phases of length k8, we

try lengths of k2 and k4, respectively. The result is similar performance overall with additional

smoothing: the alternation between degraded performance (during sampling) and good performance

(during exploiting) is now more frequent. Next, we try not ending the sampling phase after just

k4 steps. Now items given during the exploit phase are still added to the sample, which should

give the algorithm additional information for the rest of the epoch. This lead to a marginal boost

in performance. Finally, we try running the algorithm without resetting the sampled items at the
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end of every epoch. Namely, first agents were given 20 items each, and then all future items are

simply added to this sample for comparison. This algorithm performed significantly worse and

unfortunately seems to have an asymptote. When the initial 20-item sample is “good,” then the

overall run may perform reasonable well, but if we are unlucky and the initial sample is not great,

then there is no chance for a later reset. Hence, in many settings, we see that only about half of

the runs would lead to EF allocations and welfare appears to cap out well below 99% of optimal

without hope of further improvements from additional items.

9. Conclusion

To conclude, we have analyzed the online fair division problem when agents only reveal partial

information. In multiple settings, we show that ordinal information is enough to obtain strong

fairness and efficiency guarantees, even when given as little as binary signals about agent prefer-

enecs. For food rescue services who are already constrained to eliciting binary preferences this is

good news, though we see that the asymptotically optimal algorithms require repeated sampling

phases during which items are (purposefully) allocated suboptimally.

Building on this work, there are many other forms of partial information that may be practical

to elicit in specific contexts and which may enable different guarantees. For example, if agents can

compare small subsets of items, rather than single items, it may be possible to achieve stronger

results such as arbitrarily good approximations to PO even in the non-i.i.d. setting. Another

interesting direction is to ask what guarantees are possible given a limited time horizon or sample

budget. Now convergence rate matters and, for example, there is a reason to prefer Algorithm 1

over Algorithm 2 in the non-i.i.d. setting. We assume throughout agents are truthful, we leave the

study of strategic agents to future work.
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e-companion to Benadè, Halpern and Psomas: Dynamic Fair Division with Partial Information ec1

Details omitted from the main body

EC.1. Proofs
EC.1.1. Proof of Lemma 1

We focus on quantile maximization. The same proof goes through essentially unchanged for the

threshold algorithm; we explain the differences whenever it’s appropriate.

Fix distributions D1, . . . ,Dn with CDFs F1, . . . , Fn. Fix two agents i and j. We will show with

high probability, i does not envy j (in a strong sense). Union bounding over all
󰀃
n
2

󰀄
pairs yields the

lemma statement.

As in Dickerson et al. (2014), we compare the expected contribution of an item t to i’s bundle

and its expected contribution to j’s bundle. Let A be the random variable denoting the agent that

received the item. We want to consider the difference E[vi,t · I[A = i]]− E[vi,t · I[A = j]]. Let Hi

be the event that Fi(vi,t)≥ n−1
n

, and Li be the compliment. We split each of the two terms into

conditional expectations depending on the signal, beginning with the first one:

E[vi,t · I[A= i]] =E [vi,t · I[A= i] | Hi] ·Pr[Hi] +E [vi,t · I[A= i] | Li] ·Pr[Li].

Note that, under quantile maximization, vi,t is positively correlated with I[A = i]: for any fixed

value vi,t, A= i with probability F (vi,t)
n−1, which is increasing in vi,t . Therefore, the expectation

of the product is greater than or equal to the product of the expectations: E [vi,t · I[A= i] | Hi]≥

E [vi,t | Hi] ·Pr[A= i | Hi] and E [vi,t · I[A= i] | Li]≥E [vi,t | Li] ·Pr[A= i | Li]. Therefore

E[vi,t · I[A= i]]≥E [vi,t | Hi] ·Pr[A= i | Hi] ·Pr[Hi] +E [vi,t | Li] ·Pr[A= i | Li] ·Pr[Li]

=E [vi,t | Hi] ·Pr[A= i and Hi] +E [vi,t | Li] ·Pr[A= i and Li].

For the threshold algorithm, we have equality above, since conditioned on either Hi or Li, vi,t is

independent of I[A= i], as the allocation depends only on the high vs low signal.

On the other hand, vi,t is negatively correlated with I[A= j]. Therefore

E[vi,t · I[A= j]]≤E [vi,t | Hi] ·Pr[A= j and Hi] +E [vi,t | Li] ·Pr[A= j and Li].

Again, for the threshold algorithm, we have equality.

Combined, we have

E[vi,t · I[A= i]]−E[vi,t · I[A= j]]≥E [vi,t | Hi] · (Pr[A= i and Hi]−Pr[A= j and Hi]) (EC.1)

−E [vi,t | Li] · (Pr[A= j and Li]−Pr[A= i and Li]) . (EC.2)
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We analyze (EC.1), Pr[A= i and Hi]−Pr[A= j and Hi]. Let Hj be the event that Fj(vj,t)≥ n−1
n

Let Lj be its complement. We have:

(Pr[A= i and Hi and Lj] +Pr[A= i and Hi and Hj])

− (Pr[A= j and Hi and Lj] +Pr[A= j and Hi and Hj]) .

Notice that Pr[A= j and Hi and Lj] = 0 because if agent i has a high quantile and j

has a low quantile, j cannot receive the item (in either algorithm). Additionally, by sym-

metry, Pr[A= i and Hi and Hj] = Pr[A= j and Hi and Hj]. Therefore, (EC.1) simplifies to

Pr[A= i and Hi and Lj]. Finally, we note that Pr[A= i and Hi and Lj] ≥ 1
n−1

, again, for both

algorithms.

We analyze (EC.2), Pr[A= j and Li]− Pr[A= i and Li]. Let E low be the event that all agents

other than i have quantile lower then n−1
n

. Let E low be its complement, the probability that at least

one agent other than i has a high quantile. We have:

󰀓
Pr

󰀅
A= j and Li and E low

󰀆
+Pr

󰁫
A= j and Li and E low

󰁬󰀔

−
󰀓
Pr

󰀅
A= i and Li and E low

󰀆
+Pr

󰁫
A= i and Li and E low

󰁬󰀔
.

Notice that Pr
󰁫
A= i and Li and E low

󰁬
= 0 because if agent i has a low quantile and at least one

other agent has a high quantile, i cannot receive the item. Additionally, by symmetry,

Pr
󰀅
A= j and Li and E low

󰀆
=Pr

󰀅
A= i and Li and E low

󰀆
,

since when all agents have low quantiles, i and j are equally likely to receive the item.

Hence, the probability in (EC.2) simplifies to Pr
󰁫
A= j and Li and E low

󰁬
=Pr

󰁫
A= j|Li and E low

󰁬
·

Pr
󰁫
Li and E low

󰁬
. The first term is equal to 1/(n− 1), since j is equally likely to receive the item

compared to any agent. The second term is n−1
n

·
󰀓
1−

󰀃
n−1
n

󰀄n−1
󰀔
. Observing that

󰀃
n−1
n

󰀄n−1
=

󰀃
1− 1

n

󰀄n−1 ≥ 1
e
, we have that the probability in (EC.2) is at most 1

n
(1− 1

e
).

Overall, we have shown that

E[vi,t · I[A= i]]−E[vi,t · I[A= j]]≥E [vi,t | Hi]
1

n− 1
−E [vi,t | Li]

e− 1

en

≥ e− 1

en
(E [vi,t | Hi]−E [vi,t | Li])

≥ 1

2n
(E [vi,t | Hi]−E [vi,t | Li])

=
1

2n
(E [Vi | Hi]−E [Vi | Li])

It remains to show that the value of i for AT
i is at least her value for AT

j plus

1
4n

(E [Vi | Hi]−E [Vi | Li]) with high probability. Towards this, notice that the value of i for AT
i
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minus her value for AT
j is the sum of T i.i.d. random variables, supported in [−1,1], whose expecta-

tion is at least 1
2n

(E [Vi | Hi]−E [Vi | Li]), as we’ve established so far. Hoeffding’s inequality then

implies that the probability that this difference is less than b = 1
4n

(E [Vi | Hi]−E [Vi | Li]) is at

most 2 exp
󰀓
− b2T

2

󰀔
, i.e., exponentially small, since b is a constant. Observing that E [Vi | Hi] ≥

E [Vi | Qi ≥ 1/2] and E [Vi | Li]≤E[Vi] concludes the proof. □

EC.1.2. Proof of Lemma 6

Fix such an ε, δ, τ , and ℓ. We claim that a sufficient condition for ε-accuracy is that all agents

accept an item with quantile within q∗ ± ε/(2n). Indeed, note that any sampled quantile outside

this range will be classified (as high vs low) correctly. With such an error tolerance, the probability

a specific agent’s quantile (for a fresh item) falls within this range is at most ε/n. Via a union

bound over all n agents, the probability that no agent has a quantile (for a fresh item) within this

range is at least 1− ε. Hence, all that needs to be shown is that with probability 1− δ, all agents

accept an item and the accepted item has quantile within the allowed range.

Since there are τ trials, there are at most nτ items tested across all agents. We show that ℓ

is large enough such that with probability 1− δ/2, all these tests are within ±ε/(6n) of the true

value. Using Hoeffding’s inequality, the probability any specific test fails is at most

2 exp

󰀕
−2

󰀓 ε

6n

󰀔2

· ℓ
󰀖
= 2exp

󰀕
− ε2

18n2
· ℓ
󰀖
≤ 2exp

󰀕
− ln

󰀕
4τn

δ

󰀖󰀖
=

δ

2τn
,

a union bound over all nτ tests yields the required probability.

Note that under the condition that all the tests are this accurate, since the threshold for accep-

tance is ±ε/(3n), any accepted item will be within ±ε/(2n) of q∗, as needed. What remains to be

shown is that each agent will, with reasonable probability, accept an item. To that end, we need to

show that with probability 1− δ/2, all agents will test an item that is within ±ε/(6n) of q∗. If such

an item is tested and the test is accurate, the empirical estimate of its quantile is within ±ε/(3n),

and the item would hence be accepted. A union bound will then tell us that both of these events

would occur with probability 1− δ.

Towards proving that each agent will test an item within ±ε/(6n) of q∗ with probability 1− δ/2,

we use a union bound, showing that each agent individually will not sample such an item with

probability at most δ/(2n). In each of τ trials, the probability such an item is sampled is ε/(3n).

Hence, the probability no such item is sampled is
󰀃
1− ε

3n

󰀄τ
. We then have that

󰀓
1− ε

3n

󰀔τ

=

󰀕
1− 1

3n
ε

󰀖τ

=

󰀣󰀕
1− 1

3n
ε

󰀖 3n
ε

󰀤τ · ε
3n
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≤
󰀃
e−1

󰀄τ · ε
3n (1− 1/x)x ≤ e−1 for all x≥ 1

= e−τ · ε
3n

≤ e− ln(2n/δ)

=
δ

2n
,

as needed. □

EC.1.3. Proof of Lemma 7

First, we prove that for all k≥ 10n, epoch k is εk-accurate with probability δk for εk = 3n/k2 and

δk = 2ne−k. Since k > 3n these are valid values between 0 and 1. Hence, we simply need to check

that the τ and ℓ inequalities hold for the number of trials and number of test items specified in

Algorithm 2. For arbitrary epoch k,

ln(2n/δk)

εk/(3n)
= ln

󰀃
ek
󰀄
k2 = k3,

so the number of trials is sufficiently large. Further,

18n2

ε2k
ln

󰀕
4k3n

δk

󰀖
= 2k4 · ln

󰀃
2k3ek

󰀄

≤ 2k4 · ln
󰀃
k4ek

󰀄
(k≥ 2)

= 2k4 · (k+4 lnk)

≤ 2k4 · (k+4k) (lnk < k)

≤ 10k5

≤ k6. (k≥ 10)

Recall that k(t) is defined as the epoch of item t. As in the proof of Lemma 5, we characterize

deviations from the ideal algorithm into at least one of five ways.

1. Item t was allocated in one of the first 10n− 1 epochs; that is, k(t)< 10n.

2. Item t was allocated in one of the first ⌊T 1/20⌋ epochs; that is, k(t)≤ ⌊T 1/20⌋.

3. Item t was allocated during the sampling phase of epoch k(t)≥ 10n.

4. Item t was allocated during the ranking phase of epoch k(t)≥ 10n, which was εk(t)-accurate.

5. Item t was allocated during the ranking phase of epoch k(t)≥ ⌊T 1/20⌋+1, which was not εk(t)-

accurate.

We say an item t is incorrect (incorrectly allocated) when it is given to an agent with non-

maximum quantile for it. We show that the number of mistakes in each category are bounded

by 1020n19, T 1/2 + T 19/20, 2T 5/9, (6n+1)T 17/18 and 0, with probability 1,1,1,1− exp
󰀃
−Ω(T 8/9)

󰀄
,
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and 1− exp
󰀃
−Ω(T 1/20)

󰀄
, respectively. This implies, via a union bound, that the total number of

mistakes is at most the sum of these quantities, or O(T 19/20), with probability 1−exp
󰀃
−Ω(T 1/20)

󰀄
,.

The number of items in category 1 is at most

10n󰁛

k=1

k9 + k18 ≤ (10n)10 +(10n)19 ≤ 1020n19

Similarly, the number of items in category 2 is at most

⌊T1/20⌋󰁛

k=1

k9 + k18 ≤ (⌊T 1/20⌋)10 +(⌊T 1/20⌋)19 ≤ T 1/2 +T 19/20.

Notice that T ≥
󰁓k(T )−1

k=1 k9 + k18 ≥ (k(T )− 1)18, and therefore k(T )≤ 2T 1/18.

For the third category, since k(T )≤ 2T 1/18, the total number of items in the sampling phase is

(with probability 1) upper bounded by

k(T )󰁛

k=1

k9 ≤ k(T )10 ≤ 2T 5/9.

For the fourth category, note that each item t in this category has probability εk(t) of being

incorrect. The expected number of mistakes is at most

k(T )󰁛

k=10n

εk(t)k
18 =

k(T )󰁛

k=10n

3nk16 ≤ 3nk(T )17 ≤ 6nT 17/18.

Using Hoeffding’s inequality we get that with high probability the number of mistakes is at

most 7nT 17/18, since a deviation of nT 17/18 occurs with probability at most exp
󰀃
−2n2T 17/9/T

󰀄
=

exp
󰀃
−2n2T 8/9

󰀄
.

For the fifth category, we will union bound over the probability that any epoch k ≥ ⌊T 1/20⌋+1

is not εk-accurate. We have that this is at most

∞󰁛

k=⌊T1/20⌋+1

δk =
∞󰁛

k=⌊T1/20⌋+1

2ne−k ≤ 2n exp
󰀃
−T 1/20

󰀄
· 4n exp

󰀃
−T 1/20

󰀄
.

Hence, the probability there are more than 0 items in this category is 1− exp
󰀃
−Ω(T 1/20)

󰀄
. □

EC.1.4. Proof of Theorem 4

The proof is nearly identical to the proof of Theorem 2. Fix a distribution D with CDF F and

let V be a random variable with distribution D. Fix some ε to be 1− 1/e− ε welfare maximizing.

Let ET
1 be the event that the maximum social welfare at time T is at least 1/2 ·E[V ] ·T , let ET

2 be

the event the ideal threshold algorithm is c-strongly-EF for c= (E[V | F (V )≥1/2]−E[V ])

4n
, let ET

3 be the

event that the ideal threshold algorithm is a 1−1/e− ε/2 approximation to welfare, and let ET
4 be
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the event that Algorithm 2 differs from the ideal threshold algorithm on at most f(T ) items from

Lemma 7. We first claim that ET
1 ∩ET

2 ∩ET
3 ∩ET

4 occurs with probability 1− exp
󰀃
−Ω(T 1/20)

󰀄
. Note

that Lemmas 2, 1 ,and 7 tell us each of ET
2 , ET

3 , and ET
4 occur with probability 1− exp(−Ω(T )),

1− exp(−Ω(T )), and 1− exp
󰀃
−Ω(T 1/20)

󰀄
, respectively. For ET

1 , the maximum value for each item

is in expectation at least the expected value for a single agent E[V ]. Hence, a Chernoff bound tells

us ET
1 occurs with probability at least 1− exp

󰀓
−E[V ]T

8

󰀔
. The claim holds via a union bound.

Next, note that for sufficiently large T , since f(T ) ∈ o(T ), f(T ) ≤ (E[V | F (V )≥1/2]−E[V ])

8n
· T and

f(T )≤ ε/4 ·E[V ] ·T . Fix such a sufficiently large T . We show that conditioned on ET
1 ∩ET

2 ∩ET
3 ∩ET

4 ,

both EF and (1− 1/e− ε)-welfare hold. Recall that a “difference” between Algorithm 2 and the

ideal threshold algorithm refers to different distributions over the agents that get some item (i.e.,

a different randomized allocation). In order to make statements about envy-freeness and efficiency

we need a way to argue about the differences between the algorithms ex-post. However, notice that

without loss of generality we can couple the decision made by the two algorithms when randomized

allocation is the same; that is, when Algorithm 2 does not differ from the ideal threshold algorithm

we can assume without loss of generality that the agent who gets the item is the same. Let

AIT = (AIT
1 , . . . ,AIT

n ) be the allocation of the ideal threshold algorithm and A = (A1, . . . ,An) be

the allocation of Algorithm 2. Beginning with envy-freeness, we have that for all pairs of agents i

and j,

vi(Ai)≥(ET
4 ) vi(A

IT
i )− f(T )

≥(ET
2 ) vi(A

IT
j )− f(T )+

(E[V | F (V )≥ 1/2]−E[V ])T

4n

≥(ET
4 ) vi(Aj)− 2f(T )+

(E[V | F (V )≥ 1/2]−E[V ])T

4n

≥ vi(Aj),

so the allocation is envy-free. Let A∗ be a welfare-maximizing algorithm. For the welfare approxi-

mation, we then have

sw(A)

sw(A∗)
=

sw(AIT )− (sw(AIT )− sw(A))

sw(A∗)

≥(ET
4 ) sw(A

IT )− f(T )

sw(A∗)

=
sw(AIT )

sw(A∗)
− f(T )

sw(A∗)

≥(ET
3 ) 1− 1/e− ε/2− f(T )

sw(A∗)

≥(ET
1 ) 1− 1/e− ε/2− f(T )

1/2 ·E[V ] ·T
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≥ 1− 1/e− ε/2− ε/4 ·E[V ] ·T
1/2 ·E[V ] ·T

= 1− 1/e− ε,

as needed. □

EC.1.5. Proof of Theorem 7

The proof of envy-freeness for each algorithm is nearly identical to Theorems 2 and 4 respectively;

we show it here for completeness. We focus on Algorithm 1. The proof for Algorithm 2 goes

through identically with all occurences of quantile maximization replaced with the ideal threshold

algorithm, all occurences of Lemma 5 replaced with Lemma 7, and 1/10 replaced with 1/20.

Fix a distributions D1, . . . ,Dn with CDFs F1, . . . , Fn and let Vi be a random variable with dis-

tribution Di. Fix some ε to be (1/e − ε)-PO. Let E = mini∈N E[Vi] be the minimum expected

value for all agents. Let ET
1 be the event that each agent i’s value for their bundle at time T is

at least 1/(2n) · E · T , let ET
2 be the even that quantile maximization is c-strongly-EF for c =

mini∈N
(E[Vi | Fi(Vi)≥1/2]−E[Vi])

4n
, let ET

3 be the event that quantile maximization is a (1/e− ε/2)-PO,

and let ET
4 be the event that Algorithm 1 differs from quantile maximization on at most f(T ) items

from Lemma 5. We first claim that ET
1 ∩ET

2 ∩ET
3 ∩ET

4 occurs with probability 1− exp
󰀃
−Ω(T 1/10)

󰀄
.

Note that Lemmas 1, 3, and 5 tell us ET
2 ,ET

3 , and ET
4 each occur with probability 1− exp(−Ω(T )),

1−exp(−Ω(T )), and 1−exp
󰀃
−Ω(T 1/10)

󰀄
, respectively. For ET

1 , note that under quantile maximiza-

tion, the probability each agent i receives an item is exactly 1/n and the expected value conditioned

on receiving the item is at least E[Vi]≥E. Hence, the expected contribution of each item to vi(Ai)

is at least 1/n ·E. A Chernoff bound then tells us ET
1 holds for agent i with probability at least

1− exp
󰀃−ET

8n

󰀄
. A union bound over all agent’s tells us this occurs simultaneously for all agents

with probability at least 1−n exp
󰀃−ET

8n

󰀄
. The claim holds via a union bound.

Next, note that for sufficiently large T , since f(T )∈ o(T ), f(T )≤mini∈N
(E[Vi | Fi(Vi)≥1/2]−E[Vi])

8n
·T

and f(T )≤ ε/(4n) ·ET . Fix such a sufficiently large T . We show that conditioned on ET
1 ∩ ET

2 ∩

ET
3 ∩ET

4 , both EF and (1/e− ε)-PO hold. Let AQM = (AQM
1 , . . . ,AQM

n ) be the allocation of quantile

maximization and A= (A1, . . . ,An) be the allocation of Algorithm 2. Beginning with envy-freeness,

we have that for all pairs of agents i and j,

vi(Ai)≥(ET
4 ) vi(A

QM
i )− f(T )

≥(ET
2 ) vi(A

QM
j )− f(T )+min

i∈N

(E[Vi | Fi(Vi)≥ 1/2]−E[Vi])

4n

≥(ET
4 ) vi(Aj)− 2f(T )+min

i∈N

(E[Vi | Fi(Vi)≥ 1/2]−E[Vi])

4n

≥ vi(Aj),
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so the allocation is envy-free. Next, we show that for all agents vi(Ai)

vi(A
QM
i )

≥ 1− ε/2. Since AQM is

(1/e− ε/2)-PO under ET
3 , this implies that A is a (1/e− ε/2)(1− ε/2)≥ 1/e− ε approximation to

PO as well.

To that end, for each agent i we have

vi(Ai)

vi(A
QM
i )

=
vi(A

QM
i )− (vi(A

QM
i )− vi(Ai))

vi(A
QM
i )

= 1− (vi(A
QM
i )− vi(Ai))

vi(A
QM
i )

≥(ET
4 ) 1− f(T )

vi(A
QM
i )

≥(ET
1 ) 1− f(T )

ET/(2n)

≥ 1− ε ·ET/(4n)

ET/(2n)

= 1− ε/2,

as needed. □

EC.2. Additional computational results

(a) Skewed beta distributions (b) Peaked beta distributions

(c) Correlated uniform distributions (d) Real data

Figure EC.1 Equivalent of Figure 3 with five agents.
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(a) Skewed distributions (b) Peaked distributions (c) Correlated distributions

Figure EC.2 Equivalent of Figure 4 with five agents.

(a) Proportion of envy-free runs.

(b) 95th percentile welfare approximations.

Figure EC.3 Equivalent of Figure 5 with five agents.


