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The dynamics of random transitive delegations on a graph are of particular interest when viewed through

the lens of an emerging voting paradigm, liquid democracy. This paradigm allows voters to choose between

directly voting and transitively delegating their votes to other voters, so that those selected cast a vote

weighted by the number of delegations they received. In the epistemic setting, where voters decide on a

binary issue for which there is a ground truth, previous work showed that a few voters may amass such

a large amount of influence that liquid democracy is less likely to identify the ground truth than direct

voting. We quantify the amount of permissible concentration of power and examine more realistic delegation

models, showing they behave well by ensuring that (with high probability) there is a permissible limit on the

maximum number of delegations received. Our theoretical results demonstrate that the delegation process

is similar to well-known processes on random graphs that are sufficiently bounded for our purposes. Along

the way, we prove new bounds on the size of the largest component in an infinite Pólya urn process, which

may be of independent interest. In addition, we empirically validate the theoretical results, running six

experiments (for a total of N = 168 participants, 62 delegation graphs and over 11k votes collected). We

find that empirical delegation behaviors meet the conditions for our positive theoretical guarantees. Overall,

our work alleviates concerns raised about liquid democracy and bolsters the case for the applicability of this

emerging paradigm.
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1. Introduction

Liquid democracy is a voting paradigm that is conceptually situated between direct democracy,

in which voters have direct influence over decisions, and representative democracy, where voters
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choose delegates who represent them for a period of time. Under liquid democracy, voters have a

choice: they can either vote directly on an issue like in direct democracy, or delegate their vote to

another voter, entrusting them to vote on their behalf. The defining feature of liquid democracy is

that these delegations are transitive: if voter 1 delegates to voter 2 and voter 2 delegates to voter

3, then voter 3 votes (or delegates) on behalf of all three voters.

In recent years, liquid democracy has gained prominence around the world. The most impres-

sive example is that of the German Pirate Party, which adopted the LiquidFeedback platform in

2010 (Kling et al. 2015). Other political parties, such as the Net Party in Argentina and Flux in

Australia, have run on the wily promise that, once elected, their representatives would be essen-

tially controlled by voters through a liquid democracy platform. Companies are also exploring the

use of liquid democracy for corporate governance; Google, for example, has run a proof-of-concept

experiment (Hardt and Lopes 2015). Blockchain systems have also been experimenting with related

weighted decentralized voting systems (Benhaim et al. 2023, Li et al. 2023).

Practitioners, however, recognize that there is a potential flaw in liquid democracy, namely,

the possibility of concentration of power, in the sense that certain voters amass a relatively large

number of delegations, giving them pivotal influence over the final decision. This scenario seems

inherently undemocratic—and it is not a mere thought experiment. Indeed, in the LiquidFeedback

platform of the German Pirate Party, a linguistics professor at the University of Bamberg received

so many delegations that, as noted by Der Spiegel,1 his “vote was like a decree.”

Kahng et al. (2021) examine liquid democracy’s concentration-of-power phenomenon from a

theoretical viewpoint and establish a troubling impossibility result in what has been called the

epistemic setting, that is, one where there is a ground truth.2 Informally, they demonstrate that,

even under the strong assumption that voters delegate only to more “competent” voters, any “local

mechanism” satisfying minimal conditions will, in certain instances, be subject to concentration of

power, leading to relatively low accuracy. More specifically, Kahng et al. model the problem as a

decision problem where voters decide on an issue with two outcomes, f0;1g, where 1 is correct (the

ground truth) and 0 is incorrect. Each of the voters i2 f1; : : : ; ng is characterized by a competence

pi 2 [0;1]. The binary vote Vi of each voter i is drawn independently from a Bernoulli distribution,

that is, each voter votes correctly with probability pi. Under direct democracy, the outcome of the

election is determined by a majority vote: the correct outcome is selected if and only if more than

half of the voters vote for the correct outcome; that is, it is correct if and only if
Pn

i=1 Vi � n=2.

Under liquid democracy, there exists a set of weights, weighti for each i 2 [n]; which represent

1 See https://tinyurl.com/y52j6nfs.

2 The use of the term “epistemic” in this context is well-established in the social choice literature (List and Goodin
2001, Pivato 2012).

https://tinyurl.com/y52j6nfs
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the number of votes that voter i gathered transitively after delegation (if voter i delegates, then

weighti = 0). The outcome of the election is then determined by a weighted majority; it is correct

if and only if
Pn

i=1 weightiVi � n=2.

Kahng et al. also introduce the concept of a delegation mechanism, which determines whether

voters delegate and, if so, to whom they delegate. They are especially interested in local mechanisms,

where the delegation decision of a voter depends only on their local neighborhood according to

an underlying social network. They assume that voters delegate only to those with strictly higher

competence, which excludes the possibility of cyclic delegations. To evaluate liquid democracy,

Kahng et al. test the intuition that society makes more informed decisions under liquid democracy

than under direct democracy (especially given the foregoing assumption about upward delegation).

To that end, they define the gain of a delegation mechanism to be the difference between the

probability the correct outcome is selected under liquid democracy and the probability the correct

outcome is selected under direct democracy. A delegation mechanism satisfies positive gain if its

gain is strictly positive in some cases, and it satisfies do no harm if, for all " > 0, its gain is at

least �" for sufficiently large instances. Assuming that competence after delegation remains strictly

above 1=2, this will follow from the law of large number that applies to the weighted majority

with weights relatively spread out (Häggström et al. 2006). The main result of Kahng et al. is

that local mechanisms can never satisfy these two requirements. Caragiannis and Micha (2019)

further strengthen this negative result by showing that there are degenerate instances where local

mechanisms perform much worse than either direct democracy or dictatorship (the most extreme

concentration of power).3

These results undermine the case for liquid democracy: the benefits of delegation appear to be

reversed by concentration of power. However, the negative conclusion relies heavily on worst-case

modeling assumptions. Our research represents a significant advance as it offers a comprehensive

framework that not only captures the worst-case scenarios of previous works, but also provides

insights into more intriguing ”high probability” cases. In particular, in this paper, we provide a

new theoretical model and extensive experiments that show that liquid democracy will typically

satisfy a probabilistic version of positive gain and do no harm under minimal assumptions.

3 The former constructs an instance where even with arbitrarily many voters, a constant number will receive a
majority of the delegations. The group has an average competence above 1/2. The probability liquid democracy
gives the right answer can be upper bounded by a constant strictly below 1, while direct democracy is correct with
probability approaching one. In the latter case, the voters’ numbers and relative competence are chosen so that
liquid democracy almost always gives the incorrect answer (as does direct voting), while dictatorship is correct with
a constant probability.
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1.1. Our Contributions and Techniques

Our contributions are the following. First, building on the work of Kahng et al. (2021), we pro-

vide a general framework to analyze the stochastic network dynamics of transitive delegations

that captures liquid democracy’s intricate interactions between local-delegation choices and global

properties. Second, we identify large classes of delegation models where liquid democracy performs

well, in that delegations induce a sufficiently small amount of concentration of power and liquid

democracy almost surely results in correct outcomes. Along the way, we prove new high-probability

bounds on the size of the largest component in an infinite Pólya urn process;4 this result may be

of independent interest. Finally, we conduct the first series of lab experiments on liquid democ-

racy that can test epistemic performance. This involved over 11;000 votes from 168 participants

in six experimental groups, where each group had pre-existing social ties. Our novel experimental

design allows us to compare the performance of direct and liquid democracy, as well as to analyze

properties of real voter delegation behavior. Importantly, the behaviors we observe align with one

of the models we introduce, thus lending support to this approach. Taken together, these results

exhibit a regime in which liquid democracy displays promising performance. We next elaborate on

some of our specific techniques.

1.1.1. Stochastic Delegations Our point of departure from the existing literature is the way

we model delegation in liquid democracy. To emphasize these differences, instead of calling these

delegation functions mechanisms, we instead call them delegation models, as they are intended

to capture independent voter behavior rather than prescribing to each voter to whom they must

delegate. Our delegation models are defined by M = (q;’); where q : [0;1]! [0;1] is a function

that maps a voter’s competence to the probability they delegate and ’ : [0;1]2!R�0 maps a pair

of competencies to a weight. In this model, each voter i votes directly with probability 1� q(pi)

and, conditioned on delegating with probability q(pi), delegates to voter j 6= i with probability

proportional to ’(pi; pj): These delegation functions do not model explicit reasoning; rather, they

model behaviors that may be influenced by tacit knowledge captured by q and ’: A voter does

not need to “know” the competence of another voter to decide whether to delegate; rather, the

delegation probabilities are influenced by competence, as captured by ’note that delegation cycles

are possible, and we take a worst-case approach to dealing with them: If the delegations form a

cycle, then all voters in the cycle are assumed to be incorrect (vote 0).5

The most significant difference between our model of delegation and that of Kahng et al. (2021)

is that in our model, each voter has a chance of delegating to any other voter, whereas in their

4 An infinite Pólya urn process models an urn process where each new ball picks its urn with a probability proportional
to the size of the urn or creates its own urn with constant probability.

5 In LiquidFeedback, delegation cycles are, in fact, ignored.
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model, an underlying social network restricts delegation options. Our model captures a connected

world where, in particular, voters may have heard of experts on various issues even if they do not

know them personally. Although our model eschews an explicit social network, it can be seen as

embedded into the delegation process, where the probability that i delegates to j takes into account

the probability that i is familiar with j in the first place. Another difference between our model

and that of Kahng et al. (2021) is that we model the competencies p1; : : : ; pn as being sampled

independently from a distribution D. While this assumption is made mainly for ease of exposition,

it allows us to avoid edge cases and obtain robust results.

1.1.2. Delegation Models Our goal is to identify delegation models that satisfy (probabilis-

tic versions of) positive gain and do no harm. Our first technical contribution, in Section 2.1, is

the formulation of general conditions on the model and competence distribution that are sufficient

for these properties to hold (Lemma 1). In particular, to achieve the more difficult do no harm

property, we present conditions that guarantee the maximum weight max-weight(Gn) accumulated

by any voter is sub-linear with high probability and the expected increase in competence after del-

egation is at least a positive constant times the population size. These conditions prevent extreme

concentration of power and ensure that the representatives after delegation are sufficiently better

than the entire population to compensate for any concentration of power that does happen.

Although the proof is straightforward, the benefit of this lemma is that it then suffices to iden-

tify models and distribution classes that verify these conditions. A delegation model M and a

competence distribution D induce a distribution over delegation instances that generates random

graphs in ways that relate to well-known graph processes, which we leverage to analyze our mod-

els. Specifically, we introduce three models, all shown to satisfy do no harm and positive gain

under any continuous distribution over competence levels. The first models, upward delegation

and confidence-based delegation, are interesting but restricted case studies that demonstrate the

robustness of our approach. By contrast, the general continuous delegation model is, as the name

suggests, quite general. Moreover, it is realistic: its predictions are consistent with our experiments.

Upward Delegation: In Section 3, we consider a model according to which the probability p of

delegation is exogenous and constant across competencies, q(pi) = p, and delegation can occur only

to voters with strictly higher competence (the weight that any voter i puts on another voter j is

’(pi; pj) = Ifpj�pi>0g: This model captures the fact that there might be some reluctance to delegate

regardless of the voter’s competence but does assume that voters act in the interest of society by

only delegating to voters that are more competent than they are.

To generate a random graph induced by such a model, one can add a single voter at a time in

order of decreasing competence and allow the voter to either not delegate (with probability 1� p)
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and create their own disconnected component, or delegate to the creator of any other component

with probability proportional the size of the component. This works because delegating to any

voter in the previous components is possible (since they have strictly higher competence) and

would result in the votes being concentrated in the originator of that component by transitivity.

Such a process exactly generates a preferential attachment graph with a positive probability of

not attaching to the existing components, also called an infinite Pólya urn process (Simon 1955).

We can then show that, with high probability, no component grows too large so long as p < 1

(see Section 1.1.3 for an overview of this step). Further, continuity of the competence distribution

ensures that enough lower competence voters delegate to higher competence voters to sufficiently

increase the average.

Confidence-Based Delegation. In Section 4, we consider a model in which voters delegate with

probability decreasing in their competencies and choose someone at random when they delegate.

That is, the probability q(pi) that any voter i delegates is decreasing in pi and the weight that any

voter i gives to any voter j is ’(pi; pj) = 1. In other words, in this model, competence does not

affect the probability of receiving delegations, only the probability of delegating.

To generate a random graph induced by such a model, one can begin from a random vertex and

study the delegation tree that starts at that vertex. A delegation tree is defined as a branching

process, where a node i’s “children” are the nodes that delegated to node i. In contrast to classical

branching processes, the probability for a child to be born increases as the number of people who

already received delegations decreases. Nevertheless, we prove that, with high probability, as long

as a delegation tree is no larger than O(logn), our heterogeneous branching process is dominated

by a sub-critical graph branching process (Alon and Spencer 2016). We can then conclude that no

component has size larger than O(logn) with high probability. Next, we show that the expected

competence among the voters that do not delegate is strictly higher than the average competence.

General Continuous Delegation. Finally, we consider a general model in Section 5 where the

likelihood of delegation is fixed and the weight assigned to each voter when delegating is increasing

in their competence. That is, each voter i delegates with probability q(pi) = p and the weight that

voter i places on voter j is ’(pi; pj); where ’ is continuous and increases in its second coordinate.

Thus, in this model, the delegation distribution is slightly skewed towards more competent voters.

To generate a random graph induced by such a model, we again consider a branching process,

but now voters j and k place different weights on i per ’. Therefore, voters have a type that governs

their delegation behavior; this allows us to define a multi-type branching process with types that

are continuous in [0;1]. The major part of the analysis is a proof that, with high probability, as long

as the delegation tree is no larger than O(logn), our heterogeneous branching process is dominated

by a sub-critical Poisson multi-type branching process. In a manner similar to Confidence-Based

Delegation, we also show that there is an expected increase in competence after delegation.
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1.1.3. Component Sizes in In�nite P�olya Urn Processes Recall that to prove that

upward delegation satis�es do no harm, we show that the largest component in an in�nite P�olya

urn process is sub-linear with high probability (Lemma 2). We briey expand on the proof as this

result was, to the best of our knowledge, not previously known in the random graph literature, and

may be of independent interest. We begin by focusing on the �rstt  bins (for a suitably chosen

 depending on the attachment probability p) and derive an upper bound on the expected size of

these bins. This allows us to use Markov's inequality and union bound over all bins to show that

simultaneously all of them are sublinear in size with high probability.

Second, we take care of the remaining bins by observing that each additional bins's growth is

isomorphic to a classic P�olya urn process with two bins, whose limiting dynamic follows a Beta

distribution. We analyze the rate of convergence, which allows us to give su�ciently strong bounds

using Chebyshev's inequality after exactly t � t  steps, and union bound over all of these bins,

concluding that all are sublinear with high probability.

1.1.4. Consistency With Experiments Lastly, we conduct six experiments to statistically

estimate the functions q and ' , and test the overall e�ectiveness of liquid democracy. Participants

were presented with several yes or no questions on various topics. We call the set of questions

related to each topic a task. For each task, participants could either choose to vote directly or

delegate their vote (for all questions) to another participant. They only saw the questions in a task

if they chose to vote directly. In a later phase, they were asked to answers the questions they had

delegated (and not seen) to see how they would have voted. This setup allows us to do a few things.

First, it induces a matched-pair design where, for each task and experiment, we can compare the

accuracy of voting under liquid and direct democracy. Second, we use the answers to all questions

to estimate participants' competencies. Using this information, we study how delegation behavior

depends on competence and investigate whether it is consistent with the theoretical �ndings.

Results suggest that (i) competence is inversely correlated with the chance of delegation, and (ii)

the likelihood of delegating to another voter increases with their competence. The results, therefore,

support the assumptions and predictions made by the con�dence-based and general continuous-

delegation models. Taken together, these results exhibit a regime in which liquid democracy is

overall more likely to pinpoint the truth than direct democracy.

1.2. Related work

The most closely related paper is that of Kahng et al. (2021), which was discussed in detail above.

It is worth noting, though, that they complement their negative result with a positive one: when the

mechanism can restrict the maximum number of delegations (transitively) received by any voter

to o(
p

logn), do no harm and positive gain are satis�ed. Imposing such a restriction would require
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a central planner that monitors and controls delegations. G•olz et al. (2018) build on this idea:

they study liquid democracy systems where voters may nominate multiple delegates and a central

planner chooses a single delegate in order to minimize the maximum weight of any voter. Similarly,

Brill and Talmon (2018) introduces a process that allows voters to specify ordinal preferences

over delegation options and possibly restricting or modifying delegations in a centralized way.

Caragiannis and Micha (2019), and then Becker et al. (2021) also consider central planners; they

show that, for given competencies, the problem of choosing among delegation options to maximize

the probability of a correct decision is hard to approximate. In any case, implementing these

proposals would require a fundamental rethinking of the practice of liquid democracy. By contrast,

our positive results show that decentralized delegation models can be inherently self-regulatory,

which supports the e�ectiveness of the current practice of liquid democracy.

More generally, there has been a signi�cant amount of theoretical research on liquid democracy

in recent years. To give a few examples: Green-Armytage (2015) studies whether it is rational for

voters to delegate their vote from a utilitarian viewpoint; Christo� and Grossi (2017) examine a

similar question but in the context of voting on logically interdependent propositions; Bloembergen

et al. (2019), Zhang and Grossi (2021) and Dhillon et al. (2023) study liquid democracy from a

game-theoretic viewpoint.

Next, our work builds on the random graph literature, as our delegation processes are related

to well-known stochastic graph processes. Upward delegation can be viewed as a generalization of

the preferential attachment model where agents do not attach to the existing component(s) with

a �xed probability. Classical preferential attachment models assume that a new node attaches to

an existing noden0 with probability (parameterized by an attachment function) depending on the

degree ofn0 (Barab�asi and Albert 1999, Durrett 2007). In our framework, a new component may

be created with s�xed probability, a setup introduced by Simon (1955) and usually referred to as

an in�nite P�olya urn process. Others have studied the distribution of degrees (Drinea et al. 2001),

the distribution of the number of components with k people at time t (Chung et al. 2003), and the

conditions for the emergence of in�nite components (Collevecchio et al. 2013). However, to the best

of our knowledge, the existing results do not allow us to derive bounds on the size of the largest

component with high probability after a �nite amount of time.

In terms of our experiments on liquid democracy, ours is the �rst paper to conduct experiments

with human subjects. Previous papers have studied di�erent aspects of liquid democracy through

experiments in corporate (Hardt and Lopes 2015) and political environments Independent of and

essentially cooncurrent with our work, Campbell et al. (2022) tested a game-theoretic formulation

of liquid democracy. Unlike our experiments, they used online platforms to gather participants

who did not know each other. Participants were assigned a probability of being correct and asked
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whether they would want to delegate to others, with experts (those with the highest probability of

being correct) being publicly known. The delegations were randomly assigned to the pre-determined

experts in one set-up, and through the random dot kinematogram task in another one. The group

sizes considered are 5 people with one expert, 15 people with 3 experts and 125 people with 25

experts. While this study reveals interesting connections between individuals' perceived competence

and delegation behavior, it cannot investigate how experts are (or are not) identi�ed endogenously

through interpersonal knowledge embedded in a social networks, since the participants do not know

each other.

Last, our work relates to recent advances in managerial studies that consider novel forms of gov-

ernance, such as corporate governance (e.g., Huang 2023), blockchain technologies (e.g., Benhaim

et al. 2023, Li et al. 2023), and prediction markets (e.g., Chen et al. 2008, Atanasov et al. 2017).

2. Model

There is a set ofn voters, denoted [n] = f 1; : : : ; ng. We assume voters are making a decision on

a binary issue with possible answers 0 and 1; there is a correct alternative (1) and an incorrect

alternative (0). Each voter i has acompetence levelpi 2 [0; 1] which is the probability that i votes

correctly. We denote the vector of competencies by~pn = ( p1; : : : ; pn ). When n is clear from the

context, we sometimes drop it from the notation.

Delegation graphsA delegation graphGn = ([ n];E ) on n voters is a directed graph with voters

as vertices and a directed edge (i; j ) 2 E denoting that i delegates their vote to j . Again, if n is

clear from context, we occasionally drop it from the notation. The outdegree of a vertex in the

delegation graph is at most 1 since each voter can delegate to at most one person. Voters that

do not delegate have no outgoing edges. In a delegation graphGn , the delegations receivedby

a voter i , delsi (Gn ), is de�ned as the total number of people that (transitively) delegated to i

in Gn , (i.e., the total number of ancestors of i in Gn ). The weight of a voter i , weighti (Gn ), is

delsi (Gn ) + 1 (the number of delegation they received plus their own weight) if i votes directly,

and 0 if i delegates. We de�nemax-weight(Gn ) = max i 2 [n ] weighti (Gn ) to be the largest weight of

any voter and de�ne total-weight(Gn ) =
P n

i =1 weighti (Gn ). Since each vote is counted at most once,

we have that total-weight(Gn ) � n. However, note that if delegation edges form a cycle, then the

weight of the voters on the cycle and voters delegating into the cycle are all set to 0 and hence will

not be counted. In particular, this means that total-weight(Gn ) may be strictly less than n.6

6 This is a worst-case approach where cycles can only hurt the performance of liquid democracy, since this assumption
is equivalent to assuming that all voters on the cycles vote incorrectly.
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Delegation instancesWe call the tuple (~pn ;Gn ) a delegation instance, or simply an instance,

on n voters. Let Vi = 1 if voter i would vote correctly if i did vote, and Vi = 0 otherwise. Fixed

competencies~pn induce a probability measureP~pn over the n possible binary votesVi , where Vi �

Bern(pi ). Given votes V1; : : : ;Vn , we let X D
n be the number of correct votes under direct democracy,

that is, X D
n =

P n
i =1 Vi . We let X F

Gn
be the number of correct votes under liquid democracy with

delegation graphGn , that is, X F
Gn

=
P n

i =1 weighti (Gn ) � Vi . The probability that direct democracy

and liquid democracy are correct areP~pn [X D
n > n= 2] and P~pn [X F

Gn
> n= 2], respectively.

Gain of a delegation instanceWe de�ne the gain of an instance as

gain(~pn ;Gn ) = P~pn [X F
Gn

> n= 2] � P~pn [X D
n > n= 2]:

In words, it is the di�erence between the probability that liquid democracy is correct and the

probability that majority is correct.

Randomization over delegation instancesIn general, we assume that both competencies and del-

egations are chosen randomly. Each voter's competencepi is sampled i.i.d. from a �xed distribution

D with support contained in [0;1]. Delegations will be chosen according to amodel M . A model

M = ( q; ' ) is composed of two parts. The �rst q : [0; 1] ! [0; 1] is a function that maps competencies

to the probability that the voter delegates. The second' : [0; 1]2 ! R� 0 maps pairs of competencies

to a weight. A voter i with competencepi will choose how to delegate as follows:

{ With probability 1 � q(pi ) they do not delegate.

{ With probability q(pi ), i delegates;i places weight' (pi ; pj ) on each voter j 6= i and randomly

sample another voterj to delegate to proportional to these weights. In the degenerate case where

' (pi ; pj ) = 0 for all j 6= i , we assume thati does not delegate.

A competence distribution D, a modelM , and a numbern of voters induce a probability measure

PD ;M;n over all instances (~pn ;Gn ) of size n.

We can now rede�ne the do no harm (DNH) and positive gain (PG) properties from Kahng

et al. (2021) in a probabilistic way.

Definition 1 (Probabilistic do no harm). A model M satis�es probabilistic do no harm

with respect to a classD of distributions if, for all distributions D 2 D and all "; � > 0, there exists

n0 2 N such that for all n � n0,

PD ;M;n [gain(~pn ;Gn ) � � " ] > 1 � �:

Definition 2 (Probabilistic positive gain). A model M satis�es probabilistic positive gain

with respect to a classD of distributions if there exists a distribution D 2 D such that for all

"; � > 0, there existsn0 2 N such that for all n � n0,

PD ;M;n [gain(~pn ;Gn ) � 1 � " ] > 1 � �:
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2.1. Core Lemma

Next, we give a key lemma, which provides su�cient conditions for a model M to satisfy prob-

abilistic do no harm and probabilistic positive gain with respect to a classD of distributions.

This lemma will form the basis of all of our later results. Since the result follows from relatively

straightforward concentration inequalities, we defer the proof to Appendix B.1.

Lemma 1. If M is a model, D a class of distributions, n a number of persons, and for all

distributions D 2 D, there is an � 2 (0; 1) and C : N ! N with C(n) 2 o(n) such that

PD ;M;n [max-weight(Gn ) � C(n)] = 1 � o(1) (1)

PD ;M;n

"
nX

i =1

weighti (Gn ) � pi �
nX

i =1

pi � 2�n

#

= 1 � o(1); (2)

then M satis�es probabilistic do no harm. If in addition, there exists a distribution D 2 D and an

� 2 (0; 1) such that

PD ;M;n

"
nX

i =1

pi + �n � n=2 �
nX

i =1

weighti (Gn ) � pi � �n

#

= 1 � o(1); (3)

then M satis�es probabilistic positive gain.

In words, condition (1) ensures that, as the number of voters grows large, the weighted number of

correct votes under liquid democracy will concentrate around its expectation,
P n

i =1 weighti (Gn ) � pi .

Standard concentration results already imply this holds for direct democracy. Condition (2) ensures

that these expectations are su�ciently separated. So with high probability, liquid democracy will

have more correct votes than direct democracy, which is su�cient to guarantee DNH. Finally,

Condition (3) ensures that in some cases, the expectations for direct and liquid votes will be below

and over half the voters, respectively, which after applying concentration means there will likely

be a large gain.

In the following sections, we investigate natural delegation models and identify conditions such

that the models satisfy probabilistic do no harm and probabilistic positive gain. In all instances,

we will invoke Lemma 1 after showing that its su�cient conditions are satis�ed.

7 Note that positive gain and do no harm relate to the notion of concentration of the weighted sum
P n

i =1 weighti Vi .
Indeed, the probability of direct democracy being correct approaches 1 as n increases when the average competence is
strictly above 1 =2. As a result, do no harm is satis�ed by a delegation model exactly when the probability that liquid
democracy is correct also approaches 1. This happens when the competence after delegation remains strictly above
1=2, and the weighted sum

P n
i =1 weighti Vi concentrates. Positive gain also holds if there exists a setup where the

average group competence is strictly below 1=2, and the average competence after delegation remains strictly above
1=2 and the weighted sum

P n
i =1 weighti Vi concentrates. In turn, these established benchmarks are directly mapped

to existing results in social choice theory on the convergence of weighted majorities H•aggstr•om et al. (2006).
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3. Strictly Upward Delegation Model

We now turn to the analysis of a simple model that assumes that voters either do not delegate

with �xed exogenous probability or delegate to voters that have a competence greater than their

own.

Formally, for a �xed p 2 [0; 1] we let M U
p = ( q; ' ) be the model consisting ofq(pi ) = p for all

pi 2 [0; 1], and ' (pi ; pj ) = I f pj >p i g for all i; j 2 [n]. That is, voter i delegates with �xed probability p

and puts equal weight on all the more competent voters. In other words, if voteri delegates, then

i does so to a more competent voter chosen uniformly at random. Note that a voter with maximal

competence will place 0 weight on all other voters, and hence is guaranteed not to delegate. We

refer to M U
p as the Upward Delegation Modelparameterized by p.

Theorem 1 (Upward Delegation Model) . For all p 2 (0; 1), M U
p satis�es probabilistic do

no harm and probabilistic positive gain with respect to the classDC of all continuous distributions.

The proof of the theorem relies on novel bounds we drive on the largest bin size in an in�nite

P�olya urn process (Simon 1955, Chung et al. 2003). We �rst formally de�ne the process and present

our bound in Lemma 2. A P�olya urn process with attachment probability p begins at time t = 1

with one ball in one bin. At each timestep t > 1, a new ball arrives. With probability 1 � p, a new

bin is created and the new ball is placed in that bin; with probability p, the ball joins an existing

bin, and it does so with probability proportional to the number of balls in the bins, i.e., if there

are three bins containing 1, 2, and 3 balls respectively, it joins each with probability 1=6;2=6; and

3=6 respectively. We then have the following.

Lemma 2. For all p 2 (0; 1) and t � 1, let L p
t be the random variable denoting the maximum

number of balls in any bin after running the in�nite P�olya urn process with new-bin probability p for

t steps. Then, there exists� < 1 depending only onp such that for all T � 1, Pr[L p
T � T � ] = 1 � o(1):

Proof Fix the parameter p 2 (0; 1). Choose to be a constant such that 3=4<  < 1; note that

p+ (1 � p) < p + (1 � p) = 1. Choose � (for the lemma statement) such that p+ (1 � p) < � < 1.

Notice that we can choose and � such that � is arbitrarily close to 3=4 + p=4.

Let B (k ) denote the k-th bin. Let U (k )
t be the size ofB (k ) at time t. Since there are at mostt

bins by time t, notice that L p
t = max( U (1)

t ; : : : ;U ( t )
t ). In general, our approach will be to analyze

bins separately and show thatU (k )
T remains belowT � with high enough probability so that we can

union bound over all possiblek � T. That is, we will show

TX

k=1

Pr[U (k )
T > T � ] = o(1);
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which also implies Pr[L p
T > T � ] = o(1). Hence, it will be useful to consider this process more formally

from the perspective of the kth bin, B (k ) . The kth bin B (k ) is \born" at some time t � k, the

kth time in which a ball does not join a pre-existing bin, at which point U (k )
t = 1 (prior to this,

U (k )
t = 0). More speci�cally, the �rst bin B (k ) is guaranteed to be born at time t = 1 and for all

other k > 1, B (k ) will be born at time t � k with probability
� t � 1

k � 1

�
(1 � p)k pt � k , although these exact

probabilities will be unimportant for our analysis. Once born, we have the following recurrence on

U (k )
t describing the probability B (k ) will be chosen at time t:

U (k )
t =

8
<

:
U (k )

t � 1 + 1 with probability
p�U ( k )

t � 1
t � 1

U (k )
t � 1 with probability 1 �

p�U ( k )
t � 1

t � 1 :

Let W (k )
t be the process for the size of bin that is born at timek. That is, W (k )

k = 1, and for k > t ,

W (k )
t follows the exact same recurrence asU (k )

t . Note that since the kth bin B (k ) can only be born

at time k or later, we have that W (k )
t stochastically dominatesU (k )

t for all k and t. Hence, it su�ces

to show that
TX

k=1

Pr[W (k )
T > T � ] = o(1): (4)

We split our analysis into two parts: the �rst consider the �rst T  bins, while the second considers

the last T � T  bins.

We �rst show that
P T 

k=1 P[W (k )
T > T � ] = o(1). Note that the expectation of W (k )

n

E[W (k )
n ] =

�( n + p)�( k)
�( p+ k)�( n)

(5)

for all k � n, where � represents the Gamma function. We relegate the argument for Equation (5)

to Appendix B.2. Using this along with Gautchi's inequality (Gautschi 1959), ( t + p� 1)p � �( p+ t )
�( t ) �

(t + p)p, to approximate the � terms, we can apply Markov's inequality and use algebra to get
P n 

k=1 P[W k
n > n � ] = o(1). We again relegate these arguments to Appendix B.2.

Now consider the �nal T � T  components. We will prove that Pr[W (T  +1)
T > T � ] = o(1=T). Since

W (k )
T stochastically dominatesW (k 0)

T for all k0 � k, this implies that Pr[ W (k )
T > T � ] = o(1=T) for all

k � T  + 1. Hence,
TX

k= T  +1

Pr
h
W (k )

T > T �
i

= o(1):

To do this, we compare theW (T  +1)
t process to another process,Vt . We de�ne V0 = 1, and for

t > 0, take Vt to satisfy the following recurrence:

Vt =

(
Vt � 1 + 1 with probability Vt � 1

t + n 

Vt � 1 with probability 1 � Vt � 1
t + n  :
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This is identical to the W recurrence with t shifted down by n + 1 except without the p factor.

Hence,VT � T  +1 clearly stochastically dominatesW (T  +1)
T . For convenience in calculation, we will

instead focus on boundingVT which itself stochastically dominatesVT � T  +1 .

Next, note that the Vt process is isomorphic to the following classic P�olya urn process. We begin

with two bins, one with a single ball and the other with n balls. At each time, a new ball is added

to one of the two bins with probability proportional to the bin size. The process Vt is isomorphic

to the size of the one-ball urn after t steps. Classic results tell us that for �xed starting bin sizes

a and b, as the number of steps grows large, the possible proportion of balls in thea-bin follows a

Beta(a;b) distribution (Markov 1917, Eggenberger and P�olya 1923, P�olya 1930, Johnson and Kotz

1978, Mahmoud 2009).

The mean and variance of such a Beta distribution would be su�cient to prove our necessary

concentration bounds; however, for us, we need results after exactlyT � T  steps, not simply in

the limit. Hence, we will be additionally concerned with the speed of convergence to this Beta

distribution.

Let X T = VT
T and ZT � Beta(1;T  ). From Janson (2020), we know that the rate of convergence

is such that, for any p � 1

`p(X T ; ZT ) = �(1 =T) (6)

where `p is the minimal L p metric, de�ned as

`p(X;Y ) = inf
n

E[jX 0� Y 0jp]1=p j X 0 d= X;Y 0 d= Y
o

;

which can be thought of as the minimalL p norm over all possible couplings betweenX and Y . For

our purposes, the only fact about the`p metric we will need is that `p(X; 0) = E[jX jp]1=p where 0 is

the identically 0 random variable. Since`p is in fact a metric, the triangle inequality tells us that

`p(0;X n ) � `p(0;Zn ) + `p(Zn ;X n ), so, combining with (6), we have that

E[jX T jp]1=p � E[jZT jp]1=p + �(1 =T) (7)

for all p � 1.

Note that since ZT � Beta(1;T  ),

E[ZT ] =
1

1 + T 
= �( T �  )

and

Var[ZT ] =
T 

(2 + T  )(1 + T  )2
= �( T � 2 ):
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Given these results, we are ready to prove thatVT is smaller than T � with probability 1 � o(1=T):

Precisely, we want to show that Pr[X T � T � � 1] = o(1): By Chebyshev's inequality,

Pr[X T � T � � 1] �
Var[X T ]

(T � � 1 � E[X T ])2
:

Inequality (7) with p = 1 along with the fact that X T and ZT are always nonnegative implies

that E[X T ] � E[ZT ] + �(1 =T) = O(T �  ). Hence,T � � 1 � E[X T ] = 
( T � � 1) since � � 1> � 1=2> �  .

We can therefore write:
�
T � � 1 � E[X T ]

� 2
= 
( T � 2( � � 1) ): (8)

Inequality (7) with p = 2 implies that
p

E[X 2
T ] �

p
E[Z 2

T ] + �(1 =T): Hence,

E[X 2
T ] � (�(1 =T) +

p
E[Z 2

T ])2

� (�(1 =T) +
p

E[ZT ]2 + Var[ ZT ])2

� (�(1 =T) +
p

�( T � 2 )) 2

= (�(1 =T) + �( T �  )) 2

= �( T �  )2

= �( T � 2 ):

Next, note that Var[ X T ] � E[X 2
T ]; so

Var[X T ] = O(T � 2 ) (9)

as well. Combining (8) and (9), we have that

Pr[X T � T � � 1] �
Var[X T ]

(T � � 1 � E[X T ])2
= O

�
T � 2 +2(1 � � )

�
:

Since� 2 +2(1 � � ) < 1, given our assumption that 3=4<  < � , it follows that Pr[ X T � T � � 1] =

o(1=T), which allows us to conclude that

TX

k= T  +1

Pr[W (k )
T > T � ] = o(1):

Since we showed earlier that
P T 

k=1 Pr[W (k )
T > T � ] = o(1), we have that

TX

k=1

Pr[W (k )
T > T � ] = o(1);

as needed. �

We are now ready to prove the theorem about Upward Delegation.
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Proof of Theorem 1 To prove the theorem, we will prove that the Upward Delegation Model

with respect to DC satis�es (1), (2), (3), which implies that the model satis�es probabilistic do no

harm and positive gain by Lemma 1. We show (1) here and relegate (2) and (3) to Appendix B.3

Upward Delegation satis�es (1)

To do this, we will simply show that the component sizes inGn sampled according toPD;M;n

have the same distribution as the bin sizes in a P�olya urn process with attachment probability

p, and hencemax-weight(Gn ) follows the same distribution as L p
n . Once we have shown this, (1)

follows immediately from Lemma 2 asn� 2 o(n).

To that end, �x some sampled competencies~pn . Recall that each entry pi in ~pn is sampled i.i.d.

from D, a continuous distribution. Hence, almost surely, no two competencies are equal. From now

on, we condition on this probability 1 event. Now consider sampling the delegation graphGn . By

the design of the modelM U
p , we can consider a random process for generatingGn that is isomorphic

to sampling according to PD;M;n as follows: �rst, order the competenciesp(1) > p (2) > � � � > p (n )

(note that such strict order is possible by our assumption that all competencies are di�erent) and

rename the voters such that voteri has competencep( i ) ; then construct Gn iteratively by adding

the voters one at a time in decreasing order of competencies, voter 1 at time 1, voter 2 at time 2,

and so on.

We start with the voter with the highest competence, voter 1. By the choice of' , voter 1 places

weight 0 on every other voter and hence by de�nition does not delegate. This voter forms the �rst

component in the graph Gn , which we call C (1) . Then, we add voter 2 who either delegates to

voter 1 joining component C (1) with probability p, or starts a new componentC (2) with probability

1 � p. Next, we add voter 3. If 22 C (1) (that is, if 2 delegated to 1), 3 either delegates to 1 (either

directly or through 2 by transitivity) with probability p or she starts a new componentC (2) . If

2 2 C (2) , then 3 either delegates to 1 with probability p=2 and is added toC (1) , or delegates to

2 with probability p=2 and is added toC (2) , or starts a new componentC (3) . In general, at time

t, if there are k existing componentsC (1) ; : : : ;C(k ) , voter t either joins each componentC(j ) with

probability pjC ( j ) j
t � 1 or starts a new component with probability 1 � p. To construct Gn , we run this

process forn steps. Notice that this is identical to the P�olya urn process with bins B (k ) and balls

replaced with componentsC (k ) and voters being run for n steps, as needed. �

4. Con�dence-Based Delegation Model

We now explore a model according to which voters delegate with probability that is strictly decreas-

ing (or, monotonically decreasing, that isx < y implies f (x) > f (y)) in their competence and when

they do decide to delegate, they do so by picking a voter uniformly at random. This models the
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case where voters do not need to know anything about their peers' competencies, but do have some

sense of their own competence, and delegate accordingly.

Formally, for any q, let M C
q = ( q; ' 1) where ' 1(pi ; pj ) = 1 for all i; j 2 [n]. Voter i puts equal

weight on all the voters and hence samples one uniformly at random when they delegate. We refer

to M C
q as the Con�dence-Based Delegation Model.

Theorem 2 (Con�dence-Based Delegation Model) . All models M C
q with monotonically

decreasingq satisfy probabilistic do no harm and probabilistic positive gain with respect to the class

DC of all continuous distributions.

Proof We show that the Con�dence-Based Model satisfy (1) and (2) here, and relegate showing

(3) to Appendix B.4.

Con�dence-Based Delegation satis�es(1)

Fix some distribution D 2 DC . We show there existsC(n) 2 O(log n) such that (1) holds.

Note that when sampling an instance (~pn ;Gn ), the probability an arbitrary voter i chooses to

delegate is preciselyp := ED [q]. To see this, consider how a voteri chooses whether to delegate: they

�rst sample a competencepi � D and then sample whether or not to delegate from Bern(q(pi )).

Treating this as a single process, it is clear that the overall probability of choosing to delegate is

exactly ED [q] by integrating out the competence.

Further, since D is continuous andq is monotonically decreasing,p 2 (0; 1). When a voter does

decide to delegate, they do so by picking another voter uniformly at random. Hence, we can

consider the marginal distribution of delegation graphs directly (ignoring the competencies). We

will show that when sampling a delegation graph, for any speci�c voter i , with probability 1 �

o(1=n), delsi (Gn ) � C(n), which implies weighti (Gn ) � C(n). A union bound over all n voters

implies max-weight(Gn ) � C(n) with probability 1 � o(1).

To that end, we will describe a branching process similar to the well-knowngraph branching

process(Alon and Spencer 2016), which has the property that the distribution of its size exactly

matches the distribution of delsi (Gn ) for an arbitrary voter i . We will compare this process to a

known graph branching process that has size at mostO(log n) with high probability. We will show

our process is su�ciently dominated such that it too has size at mostO(log n) with high probability.

The branching process works as follows. Fix our voteri . We sample which other voters end up in

i 's \delegation tree" (i.e., its ancestors in Gn ) dynamically over a sequence of time steps. As is

standard for these processes, all votersV will be one of three types, live, dead, or neutral. Dead

voters are those whose \children" (i.e., voters who delegate to them) we have already sampled.

Live voters are voters who have decided to delegate, but whose children have not yet been sampled.
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Neutral voters are still in the \pool" and have yet to commit to a delegation. At time zero, i is a

live voter, there are no dead voters, and all other votersV n f ig are neutral. At each time step, we

take some live voterj , sample which of the neutral voters choose to delegate toj , add these voters

as live vertices, and updatej as dead. The procedure ends when there are no more live vertices, at

which point the number of delegations received byi is simply the total number of dead vertices.

Let us now describe this more formally. Following the notation of Alon and Spencer (2016), let

Z t denote the number of voters we sample to delegate at timet. Let Yt be the number of live

vertices at time t; we have that Y0 = 1. At time t, we remove one live vertex and addZ t more, so

we have the recursionYt = Yt � 1 � 1+ Z t . We let N t be the number of neutral vertices at time t. We

have that N0 = n � 1, and N t = N t � 1 � Z t . Note that after t time steps, there aret dead vertices

and Yt live ones, so this is equivalent toN t = n � 1 � t � Yt . To sample Z t , we �x some live voter j

and ask how many of the neutral voters chose to delegate toj , conditioned on them not delegating

to any of the dead voters. Note that when sampling at this step, there aret � 1 dead voters and

conditioned on the neutral voters not delegating to the dead ones, the probability they delegate to

any of the other n � t individuals (not including themselves) is exactly p
n � t , equally split between

them for a total delegation probability of p. HenceZ t � Bin( N t � 1; p
n � t ) � Bin( n � t � Yt � 1; p

n � t ). We

denote by XD
n;p the random variable that counts the size of this branching process, i.e., the number

of time steps until there are no more live vertices. Note that the number of delegations received by

any voter has the same distribution asXD
n;p .

Choose some constantp0 such that p < p0< 1. We will be comparing theXD
n;p to a graph branching

processXG
n;p 0. The graph branching process is nearly identical, except the probability each of the

neutral vertex joins our component is independent of the number of dead vertices and is simply
p0

n . In other words, Z t � Bin( N t � 1; p0

n ). A key result about this branching process is the probability

of seeing a component of a certain sizè decreases exponentially with`. In other words, there is

some constantc such that

PD ;M C
q ;n [XG

n;p 0 � clog(n)] = 1 � o(1=n):

Take C(n) = clog(n). Note that as long ast is such that p
n � t � p0

n , the sampling in the delegation

branching process is dominated by the sampling in this graph branching process. Hence, as long as
p

n � C (n ) � p0

n , P[XD
n;p � clog(n)] � P[XG

n;p 0 � clog(n)]. SinceC(n) 2 O(log n), this is true for su�ciently

large n, so for suchn, P[XD
n;p � clog(n)] = 1 � o(1=n). By a union bound over all n voters, this

implies the desired result.

Con�dence Based Delegation satis�es(2)
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Let �q be such that �q(x) = 1 � q(x), so �q represents the probability someone with competencex

does not delegate. Notice thatED [�q] is exactly the probability an arbitrary voter will not delegate.

Let q+ (x) = �q(x)x and let

� � =
ED [q+ ]
ED [�q]

:

Expanding the de�nition, we see that � � is exactly the expected value of a voter's competence,

conditioned on them not voting. Let � D the mean of the competence distribution D. We �rst

show that � � > � D . Indeed, since bothx and �q(x) are strictly increasing functions of x, the For-

tuin{Kasteleyn{Ginibre (FKG) inequality (Fortuin et al. 1971) tells us that ED [q+ ] > ED [�q] �ED [x] =

ED [�q] � � D : This implies that the expected competence conditioned on not delegating is strictly

higher than the overall expected competence.

Next, we will show that for any constant  > 0, with high probability, both
P n

i =1 pi � (� +  )n

and
P n

i =1 weighti (G)pi � (� � �  )n. If we choose = ( � � � � )=3 and � = = 2, it follows that, with

high probability,
nX

i =1

weighti (G)pi �
nX

i =1

pi � 2�n;

implying that (2) is satis�ed.

Since thepi s are bounded independent variables, it follows directly from Heo�ding's inequality

that
P n

i =1 pi � n(� +  ) with high probability, so we now focus on showing
P n

i =1 weighti (G) � pi �

(� � �  )n with high probability. To do this, we will �rst show that, with high probability, the

delegation graphG satis�es delsi (G) � C(n) for all i and total-weight(G) � n � C(n) log2 n.

We showed in the earlier part of this proof that delsi (G) � C(n) with high probability. We will

now prove that PD ;M C
q ;n [total-weight(G) � n � C(n) log2 n j delsi (G) � C(n)] = 1 � o(1): To do this,

we will �rst bound the number of voters that, with high probability, end up in cycles. Fix a voter

i and sample i 's delegation tree. Voter i will only end up in a cycle if i chooses to delegate to

someone in this delegation tree. Since we are conditioning ondelsi (G) � C(n), the maximum size

of this tree is C(n). Hence, the total ' weight that voter i places on someone in the tree is at

most C(n), while the total weight they place on all voters is n � 1: Hence, the probability that i

delegates to someone in their tree can be at mostp� C(n)=(n � 1). Since this is true for each voteri ,

the expected number of voters in cycles is at mostnp C (n )
(n � 1) 2 O(log n): By Markov's inequality, the

probability that more than log 2 n voters are in cycles is at mostnp C (n )
(n � 1) log 2 n

= O(1=logn) = o(1):

Next, since we have conditioned ondelsi (G) � C(n); no single voter, and in particular no single

voter in a cycle, can receive more thanC(n) delegations. So conditioned on the high probability

event that there are at most log2 n voters in cycles, there are at mostC(n) log2 n voters that

delegate to those in cycles. This implies thattotal-weight(G) � n � C(n) log2 n + log 2 n with high

probability.
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We now show that, conditioned on the graph satisfying these properties, the instance (~p;G)

satis�es
P n

i =1 weighti (G) � pi � n(� � �  ) with high probability. Note that the competencies satisfy

that those that don't delegate are drawn i.i.d. from the distribution of competencies conditioned

on not delegating, which has mean� � . Fix an arbitrary graph G satisfying the properties. Suppose

M is the set of voters that do not delegate. Note that for eachi 2 M , weighti (G) � C(n), by

assumption. Further
P

i 2 M weighti (G) � n � C(n) log2(n). Hence, when we sample the non-delegator

pi s, E[
P

i 2 M weighti (G) � pi ] � (n � C(n) log2(n)) � � � . Moreover,

Var[
X

i 2 M

weighti (G) � pi ] �
X

i 2 M

weighti (G)2 � C(n) � n:

This follows from the fact that Var[ pi ] � 1 and that we have �xed the graph G and henceweighti (G)

for eachi , so these terms can all be viewed as constants. In addition, we know that, for each voteri ,

weighti (G) � C(n), and
P n

i =1 weighti (G) � n. Hence, we can directly apply Chebyshev's inequality:

PD ;M C
q ;n

"
X

i 2 M

weighti (G)pi < n (� � �  )

#

<
Var[

P
i 2 M weighti (G)pi ]

(E[
P

i 2 M weighti (G)pi ] � n(� � �  )) 2

�
nC(n)

(n � C(n) log2(n)� � )2

2 o(1);

where the �nal step holds because the numerator iso(n2) and the denominator is 
( n2). Hence,
P

i 2 M weighti (G)pi � n(� � �  ) with high probability, as needed.

To summarize, we have proved that, conditioned on delsi (G) � C(n) for all i and

total-weight(G) � n � C(n) log2 n;
P n

i =1 weighti (G) � pi � n(� � � = 3) occurs with high probability.

Given that, conditioned on delsi (G) � C(n); total-weight(G) � n � C(n) log2 n occurs with high

probability and that delsi (G) � C(n) occurs with high probability, we can conclude by the chain

rule that the intersection of these events hold with high probability. Given that the probabil-

ity of any of this event is greater than the probability of the intersection, we can conclude that
P n

i =1 weighti (G) � pi � n(� � � = 3) occurs with probability 1 � o(1); as desired. �

5. Continuous General Delegation Model

Finally, we study a model in which voters delegate with �xed probability, and they do so by picking

a voter according to a continuous increasing delegation function. This is a general model in which

delegations can either go to more or less competent neighbors but where more competent voters

are more likely to be chosen over less competent ones.

Formally, let M S
p;' = ( qp; ' ) where qp is a constant function equal to p, that is, qp(x) = p for all

x 2 [0; 1], and ' (x; y) is non-zero, continuous, and increasing iny. We then have the following.
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Theorem 3 (Continuous General Delegation Model) . All models M S
p;' with p 2 (0; 1) and

' that is non-zero, continuous, and increasing in its second coordinate satisfy probabilistic do no

harm and probabilistic positive gain with respect to the classDC of all continuous distributions.

Proof A majority of the proof is related to Appendix B.5. In the following, we show the begin-

ning of the proof, which describes the setup for proving (1).

Fix M S
p;' and and D 2 DC . Note that since ' is continuous and always positive on the compact

set [0; 1]2, ' is in fact uniformly continuous and there are boundsL;U 2 R+ such that ' is bounded

in the interval [ L;U ]. Additionally, we can assume without loss of generality that for all x 2

[0; 1], ED [' (x; �)] = 1. Indeed, ED [' (x; �)] is a positive, continuous function of x, so replacing' by

' 0(x; y) = ' (x; y)=ED [' (x; �)] induces the same model and satis�es the desired property.

The Continuous General Delegation Model satis�es(1).

Our goal is to show there is someC(n) 2 O(log n) such that, with high probability, no voter

receives more thanC(n) delegations. To do this, just as in the proof of Theorem 2, we consider

a branching process of the delegations received beginning with some voteri . We will show that

under minimal conditions on the sampled competencies (which all occur with high probability),

this branching process will be dominated by a well-knownsubcritical multi-type Poisson branching

process(Bollob�as et al. 2007), which has sizeO(log n) with high probability.

For a �xed competence vector ~pn , the branching process for the number of delegations received

by a voter i works as follows. We keep track of three sets of voters: those that are live at timet

(L t ), those dead at timet (D t ), and those neutral at time t (N t ). Unlike in the proof of Theorem 2,

where it was su�cient to keep track of the number of voters in each category, here we must keep

track of the voter identities as well, as they do not all delegate with the same probability. At time

zero, the only live voter is voter i and the rest are neutral, soL 0 = f ig, D0 = ; , and N0 = [ n] n f ig.

As long as there are still live voters, we sample the next set of delegating votersZ t in time t

by choosing some live voterj 2 Rt � 1 and sampling its children. Oncej 's children are sampled,j

becomes dead, andj 's children become live. All voters that did not delegate and were not delegated

to remain neutral. The children are sampled independently; the probability they are included is

the probability they delegate to j conditioned on them not delegating to the dead voters inD t � 1.

For each voter k 2 N t � 1, k will be included with probability

p �
' (pk ; pj )P

k 02 [n ]n(D t � 1 [f kg) ' (pk ; pk 0)
:

This is precisely the probability k delegates toj conditioned on them not delegating to any voter

in D t � 1. We continue this process until there are no more live voters, at which point the number
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of delegations is simply the number of dead voters, or equivalently, the total number of time steps.

We denote byXD
~pn ;i the size of the branching process parameterized by competencies~pn and a voter

i 2 [n].

Our goal will be to compare XD
~pn ;i to the outcome of a well-known multi-type Poisson branching

process. In this branching process, there are a �xed �nite numberk of types of voters.8 The process

itself is parameterized by ak � k matrix M , whereM � � 0 is the expected number of children of type

� 0 a voter of type � will have. The process is additionally parameterized by the type� 2 [k] of the

starting voter. The random variable Yt keeps track of the number of live voters of each type; it is a

vector of length k, where the � th entry is the number of live voters of type � . Hence,Y0 = e� , the

(basis) vector with a 1 in entry � and an entry 0 for all other types. We sample children by taking

an arbitrary live voter of type � 0 (the � 0 component in Yt � 1 must be positive, indicating that there is

such a voter), and sampling its childrenZ t , which is also a vector of lengthk, each entry indicating

the number of children of that type. The vector Z t is sampled such that the� 00entry is from the

Pois(M � 0� 00) distribution. That is, children of di�erent types are sampled independently from a

Poisson distribution, with the given expected value. We have the recursionYt = Yt � 1 + Z t � e� 0.

Note that this means that there is no \pool" of voters to choose from; in fact, it is possible

for this process to grow unboundedly large (see (Alon and Spencer 2016, Section 11.6) for the

classical description of the single-type Poisson branching process). Nonetheless, this process will

still converge often enough to remain useful. We denote byXP
M;� the random variable that gives the

size of this branching process, parameterized by expected-children matrixM and starting voter

type � 2 [k]. Such a branching process is consideredsub-critical if the largest eigenvalue ofM is

strictly less than 1 (Bollob�as et al. 2007). In such a case, if we begin with voter of any type� 2 [k],

the probability of the branching process surviving` steps decreases exponentially iǹ. Hence, there

is somec such that for all � 2 [k],

P[XP
M;� � clog(n)] = 1 � o(1=n):

To compare these branching processes, we make a sequence of adjustments to the original branch-

ing process that at each step creates a dominating branching process slightly closer in avor to the

multi-type Poisson. In the end, we will be left with a sub-critical multi-type Poisson process that

we can bound.

Fix some " > 0, which is a parameter in all of our steps. Later, we will choose" to be su�ciently

small (speci�cally, such that p(1+ " )3

1� 2" < 1) to ensure that the Poisson branching process is sub-

critical. To convert from our delegation branching process to the Poisson branching process, we take

8 In the literature, these are often called particles, but to be consistent with our other branching processes, we call
them voters here.
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a voter's type to be their competence (which completely characterizes their delegation behavior).

However, to compare to the Poisson process, there must be a �nite number of types. Hence, we

partition the interval [0 ; 1] into B buckets, each of size 1=B, such that voters in the same bucket

delegate and are delegated to \similarly". We chooseB large enough such that all points in [0;1]2

within a distance of
p

2=B of each other di�er in ' by at most L � " . (Recall that the range of

' is in the interval [ L;U ].) This is possible since' is uniformly continuous. Further, this implies

any points (x; y); (x0; y0) within a square with side length 1=B have the property that ' (x; y) �

' (x0; y0) + L � " � (1 + ") � ' (x0; y0). Note that B depends only on' and " , and hence is a constant

with respect to the number of voters n.

We say a voter i is of type � if � � 1
B < p i � �

B for 1 � � � B (with a non-strict inequality for � = 1,

so 0 is of type 1). Let S� = ( � � 1
B ; �

B ] be the set of competencies of type� (except that, in the case

that � = 1, we take S1 to be the closed interval [0; 1
B ]). Let � � = D[S� ] be the probability that a

voter has type � . Since the types form a partition of [0; 1], we have that
P B

� =1 � � = 1.

For any two types �; � 0; we de�ne

' 0(�; � 0) = sup
(x;y )2 S� � S� 0

' (x; y):9

We abuse notation by extending' 0 to operate directly on competencies in [0;1] by �rst converting

competencies to types and then applying' 0. Then, ' 0 has the property that for any pi ; pj 2 [0; 1],

' (pi ; pj ) � ' 0(pi ; pj ) � (1 + ")' (pi ; pj ):

We have that for all � , if x 2 S� , then

BX

� 0=1

' 0(�; � 0)� � 0 = ED [' 0(x; �)] � (1 + ") � ED [' (x; �)] = (1 + "):

Hence, we de�ne

~' (�; � 0) = ' 0(�; � 0) �
(1 + ")

P B
� 00=1 ' 0(�; � 00)� � 00

:

We again abuse notation to allow ~' to operate directly on competencies. We have that ~' (x; y) �

' 0(x; y) � ' (x; y) for all competenciesx; y 2 [0; 1] and further, for all � ,
P B

� 0=1 ~' (�; � 0)� � 0 = 1 + ".

The Poisson branching process we will eventually compare to is one withB types parameterized

by the expected-children matrix M , where

M � � 0 = p
(1 + ")2

1 � 2"
~' (�; � 0):

9 Note that, because ' is increasing in its second coordinate, one can actually write ~' (�; � 0) = sup x 2 S �
' (x; � 0

B ).
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First, we show that M has largest eigenvalue strictly less than 1 (for our choice of" ), so that the

branching process will be subcritical. Indeed,M has only positive entries, so we need only exhibit

an eigenvector with all nonnegative entries such that the associated eigenvalue is strictly less than

1. The Perron-Frobenius theorem tells us this eigenvalue must be maximal.

The remainder of this proof can be found in Appendix B.5. At a high level, we give details for

proving the Poisson process is subcritical, as well as completing the comparison of between the orig-

inal delegation process and this one. The comparison makes use of the concentration of the number

of voters in each bucket. The proofs of (2) and (3) follow a similar structure to Con�dence-based,

however, they are quite a bit more intricate due to the inter dependencies between competence

level and delegation probability. �

6. Liquid Democracy in Experiments

In six experiments, we statistically estimate the functions q and ' to assess the real-world

implications of our theoretical �ndings. These experiments rely on a novel design measuring

the vote n anon-strategic, non-incentivized liquid democracy stting, while simultaneously esti-

mating voters' competence. Our empirical result are consistent exhibits a regime in which liq-

uid democracy enhances collective intelligence, leveraging interpersonal knowledge embedded in

social networks and identifying diverse sets of experts. Data and code are available athttp:

//tinyurl.com/osf-liqdem 10.

6.1. Experimental Design

6.1.1. Experiments and Material We conducted E = 6 experiments after an initial pre-

test11 between March 21st and November 27th, 2022.12 In each experiment e, a group of partici-

pants13 performed jTej tasks14 Each task consisted of 8 questions on the corresponding topic that

were primarily taken and adapted from the work of Simoiu et al. (2019).15 A total of N = 168

10 Full link: https://osf.io/skxwg/?view_only=3671d431bcfd4a9cb94ded5aa86a0a95
11 A description of the setup and results from the pre-study can be found in Appendix L and initial results can be
found in Revel et al. (2022).
12 Our protocol E-3948 was approved and exempted by the university Committee on the Use of Humans as Experi-
mental Subjects.
13 Note that liquid democracy depends on the potential for bene�cial delegation. It is therefore necessary to work
with participants that have at least a passing familiarity with each other. Experiments were conducted in places
such as classrooms and company workshops, where pre-existing group structures guaranteed such conditions. While
signi�cant preparation was needed to ensure correct experimental set-ups for these environments, this design did have
the bene�t of producing high-quality data with few missing entries and minimal drop-out.
14 jTe j = 4, except for experiment e= 6 in which jTe j = 12: the �nal experiment was conducted over a longer period of
time, allowing more tasks to be completed.
15 To be consistent with the theoretical setup under study, we converted all categorical questions into binary questions.
For example, for a question from Simoiu et al. (2019) of the form \Where is this famous landmark from?" with four
options (Italy, Tibet, Greece, or Brazil), we selected a possible answer (e.g., Brazil) to reformulate the question as: \Is
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individuals participated. They hailed from over 30 countries; 33% were female, 1% were non-binary,

64% were male, and 2% preferred to self-describe. Each experimente had a number of partici-

pants Ne ranging between 14 to 50. A description of the settings and group sizes are presented in

Appendix C, and the survey material can be found in Appendix D

6.1.2. Survey Flow Participants began by providing informed consent and inputting their

name. Next, they completed the following steps.

First experimental stage: Participants were presented with a task and could either answer a

series of questions related to that theme or delegate the task to a peer. For instance, a task read:

\You will be shown images of architectural landmarks from around the world, and asked to select

the country where the landmark is located," followed by \Do you want to vote yourself or delegate

your vote to a trusted peer?" If they chose to vote themselves, they were taken to the 8 questions

contained in the task. If they chose to delegate, they were asked to select the name of their delegate

and then immediately directed to the next task. Importantly, when deciding whether or not to

delegate, participants did not see the questions.

Second experimental stage:Participants were then asked to answer \additional questions." These

were all the questions corresponding to tasks they had chosen to delegate in the �rst stage. We

collected this data at the end of the experiment so as not to prime the participants on the exercise.16

Finally, optional background questions were asked on the last page. Note that the order in which

tasks, questions within each task, and the \True/False" options appeared were all randomized.

The entire ow is summarized in Figure 3 in Section D.

6.1.3. Data Collected Let [N ] be the set ofN participants and let [E ], the set of E experi-

ments. Each experimente2 [E ] hasNe participants so that N =
P

e2 [E ] Ne: [Ne] denotes the subset

of voters in experiment e and T is the set of tasks surveyed (jT j = 15). For each task t 2 T there

is a set Rt of 8 corresponding questions. We letR =
S

t Rt be the set of all questions. For each

participant i , e(i ) 2 [E ] is the experiment they participated in; for each questionr , t(r ) 2 T is its

corresponding task.

In the experiments, we collect (i) the direct vote to each questioni answeredvi;r 2 f 0;1g where

1 means correct and 0 means incorrect and (ii) the binary signal� i;t equal to 1 if i delegated on

task t and 0 otherwise (note that � i;t is constant at the task level), along with which voter they

this famous landmark from Brazil?" In more detail, we �rst randomly selected which questions would be correct (to
avoid the sense that most questions are incorrect) and then, for the incorrect ones, drew a wrong option at random.
We found multiple inconsistencies in the Simoiu et al. (2019) data that we corrected, and the prediction questions
pertained to events that had passed, so these were replaced with new ones.
16 We validated this approach with a robustness check on the time spent by participants as a function of how often
they delegated (see Appendix K.1).
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delegated to. From this collected data, we can computewi;t , the weight of voter i on task t. This is

i 0s total weight after adding up all transitive delegations; it is set to 0 when i delegates. Figure 1

provides an example of a collected delegation graph.

In rare cases, a delegation could not be included for a couple of possible reasons. First, if a

participant delegated to somebody who did not complete the survey. In this case, we would sim-

ply ignore the delegation (assuming they directly voted). Second, in an instance of a cycle (e.g.,

participant i delegated to participant j who delegated to participant i ). These were also ignored

(i.e., assumed that no voter on the cycle delegated). In many real-world implementations, such

participants would be noti�ed of the cycle and asked to choose a new delegate or vote directly.

Figure 1 Delegation graphs for task T7 ("You will be given upcoming European men soccer games and asked

to predict the games' outcome.") from Experiment 6: Each node is a voter and the node's number

represents the rounded expertise � i;t of a given voter i for task t; computed using Item Response

Theory, see Section E.

6.2. Delegation and Competence Statistics

Over the 1096 (participant/task) pairs, we observed a total of 505 delegations meaning participants

delegated 47% of the time (std = 0 :49) The rate varied across experiments from 32% (std = 0 :49)

in experiment 2 to 54% (std = 0 :50) in experiment 5 and across tasks from 22% (std = 0 :50) in

task T8 to 80% (std = 0 :40) in task T15: Among those who voted directly, 15% received only one

delegation besides their own (hence had weight 2 in the decision), 6% received two delegations, and

just about 5% received �ve or more delegations. However, in one experiment, over half the votes
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were delegated to a single participant. Additionally, throughout all the experiments, we observed

only four delegation cycles, and all were only of size two (wherea delegates tob, and b delegates

back to a). These occurred in Experiment 4 with N4 = 27; and in Experiment 6 with N6 = 50:

Examples of additional delegation graphs can be found in Appendix F.

6.2.1. Estimating Competence In order to evaluate how delegation behavior relates to

competence, we need to estimate participants' competence. We denote by� i;t the estimated com-

petence of participant i in task t: Naively, participants' competence per task could be estimated

by averaging the number of correct answers given on all 8 questions of that task,� naive
i;t =

P
r 2 R t

v i;r

jR t j :

However, such a computation does not account for the questions' heterogeneity. We thus estimate

� i;t using the Item Response Theory framework (IRT) (Lalor and Rodriguez 2023), which provides

a widely used parametric model to estimate competence� i;t and question di�culty from repeated

measurements. We explain the parametric estimation in Appendix E.17

6.2.2. Gender-based statistics While we might worry that delegation patterns vary across

gender due to signi�cant di�erences in con�dence (e.g., Ellis et al. 2016, Sarsons and Xu 2021),

we actually �nd no signi�cant di�erences in these experiments, neither in measured competence in

tasks nor in propensity to delegate. ANOVA tests for the propensity to delegate (resp. competence)

across gender shows no signi�cant di�erences withp = 0 :464 (resp. p = 0 :112). Tukey tests for

pairwise mean comparison further validate the absence of signi�cant di�erences across the di�erent

genders (see Appendix G).

6.3. Estimating the Probability of Delegating as a Function of Competence

We now turn to estimating q and ' as a function of voters' competence. Recall thatq(� ) represents

the probability that somebody of competence � chooses to delegate. We have observations� i;t

encoding participant i 0s delegation choice for taskt, and an estimate � i;t of i 's competence on

task t: We use these to estimate the relationship between competence� i;t and the probability of

delegating q(� i;t ):

6.3.1. Methods To estimate q, we �t a logistic model, regressing� i;t against � i;t . The following

equation shows the relationship we wish to �t, where � 0 is the intercept and � q is the e�ect size

we measure:

log
�

Pr[� i;t = 1]
1 � Pr[� i;t = 1]

�
= � 0 + � q� i;t + " i : (10)

17 While � naive
i;t takes on one of nine values (multiples of 1=8), � i;t (computed using IRT) is a continuous variable

that can take on arbitrary values in R: We normalize so that � i;t 2 [0; 1], and assume this to be the competence, the
probability of being correct. Note that these di�erent methods yield a correlation between � naive

i;t and � i;t of more
than 94%:
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To account for potential correlation in the error term within participants' answers, when estimating

the parameters in Equation (10), we cluster standard errors at the participant level. We also test

for the data normality; results for these test can be found in Appendix H.

We repeat the procedure above on data sets �ltered by task, this time having a distinct� t for

each taskt to measure the task-speci�c estimates. Additionally, we run these with �xed-e�ects for

individuals and tasks to more directly measure the impact of competence (rather than just looking

at population trends). Additional details and results can be found in Appendix I.

6.3.2. Results We �nd � q = � 2:24; with standard error s:e:= 0 :42, statistics z = � 7:12 and

p-value p = 10 � 7: In turn, we estimate that q(� i;t ) = cPr[� i;t = 1] = 1

1+exp � ( � 1:39� 2:24� � i;t ) ; suggesting

that the probability of delegating decreases with competence. We can also test for monotonic

dependence through a model-free method using a Pearson correlation test and its associated p-

value. We �nd a correlation coe�cient of � 0:17 and p < 5 � 10� 8:

6.4. Estimating Weight Function Used to Delegate

Recall that in the theoretical model, a voter with competence � 1 delegates to another with com-

petence� 2 with probability proportional to ' (� 1; � 2).

6.4.1. Methods We �rst bucket the observed competence levels intoB clustersc1; : : : ; cB . We

assume that ' is constant across inputs in the same bucket, and �t it based on bucket \centers,"

� 1; : : : � B , which are simply taken to be the mean values of the competences in each bucket, i.e.,

� ` =
P

i;t :� i;t 2 c`
� i;t

jf ( i;t ) j � i;t 2 c` gj . This means we can estimate' (x; y) using the number of delegations from any

competencex0 to competencey0 where x0 and y0 fall in the same bucket asx and y, respectively.

Finally, we determine the Kendall tau rank correlation coe�cient between ' (x; y) and y with its

associated p-value to test for monotonic relation between' and its second coordinate.

Bucketing strategies. We discritize the segment [0;1] into B buckets. We do so using several

methods (to ensure the robustness of our approach); we describe here thek-means clustering

procedure and discuss the rest in Appendix J.1.

To bucket using k-means, we optimize for B clusters, c1; : : : ; cB , that minimize
P B

k=1

P
� i;t 2 ck

�
� i;t �

P
� i;t 2 ck

� i;t

j ck j

� 2

: In words, we compute a partition of the [0;1] segment such

that the total squared distance from elements to their cluster centers is minimized. We use the

standard k-means clustering algorithm to �nd the clusters (Hartigan et al. 1979).

Estimation of ' for a given delegation graph.Next, we wish to �t a function ': For given

experiment e and task t, we estimate ' e;t (� ` ; � k ) for each `; k 2 [B ]; so for conciseness, we write

' `
e;t (� k ) := ' e;t (� ` ; � k ).18

18 Note that because the number of participants in each bucket changes for di�erent experiments/tasks, it is di�cult
to �t a single function. Instead, we �rst found the most likely ' to have generated each experiment/task and then
combined these to �nd an overall best �t.
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Observe that the experiment can then be viewed as a multinomial trial: from the perspective of an

` � participant, there are B choices to pick from, where the probability of picking ak� participant is

proportional to all the ' `
e;t (� k ) for k 2 [B ] and the number of participants of each competence level.

We observe instances of these choices, thez`
k that are the observed number of times that someone

of type ` delegated to someone of typek: It then su�ces to �nd the maximum likelihood estimators

for ' `
e;t (� k ) as a function of z`

k , nk and n` : We provide more technical details in Appendix J.2.

Testing for monotonic dependence of' in its second coordinate. Finally, we test for potential

monotonic dependence of' `
e;t (� k ) as a function of � k visualizing the ' `

e;t (� k ) in Figure 2 and

computing the Kendall tau rank correlation coe�cient between ' `
e;t (� k ) and � k for a �xed `: and its

associated p-value. The Kendall tau rank correlation coe�cient evaluates the similarity between

two vectors of rank { its form and signi�cance is detailed in Appendix ?.

6.4.2. Results We show here the results for using k-means bucketing withB = 4. 19 Additional

results for other strategies and other numbers of buckets can be found in Appendix J.5. Descriptions

of these four buckets can be found in Table 1.

Table 1 Bucket Descriptions

Bucket Interval Mean competence Proportion of participants

c1 [0:00;0:514] 0:43 16%
c2 [0:515;0:674] 0:60 32%
c3 [0:677;0:814] 0:75 35%
c4 [0:818;1:00] 0:88 17%

In Figure 2, the blue crosses in each column show the' `
e;t (� k ) for all ( e; t) (for a particular � `

in the four plots on the left and for all combined in the right plot) as a function � k . The pink

points represent the average across all experiments and tasks for a given� k ; and the regression line

corresponds to an ordinary least square regression on the mean values. We show this both pooled

only for those in the same bucket, as well as all grouped together.

To test the signi�cance of the trends observed in Figure 2, we test whether the Kendall tau

rank correlation coe�cient between ' `
e;t (� k ) and � k signals signi�cant associations, both at the

overall level and when �xing `; or � ` ; the �rst coordinate in ' e;t (� ` ; � k ): Table 2 shows the resulting

correlation coe�cients and signi�cance tests. Both the trends observed in Figure 2 and in Table 2

con�rm that there is a statistically signi�cant increase in ' e;t (� ` ; � k ) as a function � ` across all

expertise levels,con�rming that voters behave according to the general continuous delegation model.

We further note that these signi�cant trends are valid at the granularity of three of the four buckets

19 This was the optimal number found using the Kneedle algorithm (Satopaa et al. 2011)
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(a) Estimated values separated by input bucket. (b) Estimated values pooled together.

Figure 2 Pooled estimates of ' `
e;t , both for each bucket individually, and grouped together. The blue crosses

show the values computed for ' `
e;t (� k ). The pink dots show the average across all values for that � k ,

and the pink lines correspond to a linear regression over the mean values. We observe increasing trends

across the board, with slope (coe�cient of determination) being 0:53(0:90); 0:28(0:46); 0:29(0:47) and

0:60(0:92), respectively, for individual buckets, and 0:38(0:85) for the pooled test. The shaded area

represents the 95% con�dence interval.

(the third bucket c3 exhibits non-statistically signi�cant positive Kendall tau rank correlation.) We

also run the same tests partitioned into tasks. The results can be found in Appendix J.4. We last

check that these results are not sensitive to the bucketing strategy in J.5.

Table 2 Summary of correlation e�ects

Overall For �xed `

c1 c2 c3 c4

Correlation 0 :17���� 0:29�� 0:12� 0:11 0:28���

P-value 2 � 10� 5 2 � 10� 2 9 � 10� 2 1 � 10� 1 3 � 10� 3

Note: � p< 0.1; �� p< 0.05; ��� p< 0.01; ���� p< 0.0001

6.5. Experimental Conclusions

We found that voters' likelihood to delegate decreases with their competence (as suggested by the

con�dence-based model). In addition, voters are more likely to delegate to someone of increasing
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competence (as suggested by the general continuous model). Note that, in fact, the general con-

tinuous model can be generalized to allow monotonically decreasingq as well (indeed, it su�ces to

consider the expectation ofq(pi ) taken over the distribution of competence as the constant prob-

ability of voting). Our empirical results are hence consistent with a general continuous delegation

model. Unsurprisingly, the upward-delegation model we described based on Caragiannis and Micha

(2019), Kahng et al. (2021) that leads to a catastrophic concentration of power is not consistent

with experimental data: voters do not delegate only to higher-competence agents, and we do not

observe constant delegation competence.

6.6. Additional Results

In the Appendix K, we run additional tests and check other properties of the collected data.

These include comparing the frequency of correctness between liquid and direct democracy

(Appendix K.2), analyzing the increase in competence (Appendix K.3), and analyzing the con-

centration of power, using both the maximum weight (Appendix K.4) and the power of small

coalitions (Appendix K.5). Note that the latter results are particularly relevvant to the concentra-

tion of power in liquid democracy, a topic that was extensively discussed in previous work. Recall

that, while previous work exhibited scenarios in which concentration of power occurs, our work

is concerned with measuring whether such an extreme concentration of power is likely. In all but

one of the 32 instances, we found no evidence of concentration of power. Anecdotally, we further

observe that a number roughly the square root of the number of voters controls half of the votes.

7. Discussion
Our paper relies on a set of assumptions and modeling choices that are worth discussing.

First, a prominent feature of our model is that there is no underlying social network, that is,

there is no restriction on whom a voter may delegate to. As we explained in Section 1, we believe

this is realistic in a variety of scenarios. But we can, in fact, extend our results to a model where

a directed social network is �rst sampled, and then a (q; ' )-model is followed. The social network

must be sampled such that the neighbors of each voter are chosen uniformly at random, although

the number of such neighbors could follow any small-tailed distribution. Intuitively, delegation

proportional to weighting the neighbors of i (rather than the entire population) is equivalent to a

possibly di�erent weighting over the entire population. 20An open research direction is to consider

graph topologies not covered by these dynamics.

Second, building on Kahng et al. (2021), we assume that there exists a true best alternative.

Needless to say, this assumption is necessary if we wish to \defend" liquid democracy against

20 This extension does not carry over to undirected networks, since if voters have a small number of neighbors, we
would expect many 2-cycles to form after delegation, which, under the worst-case cycle approach, may not be canceled
out by the overall increase in competence.
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their conclusions. It is also an extremely well-studied assumption that dates back to the 18th

century (Young 1988). The existence of a ground truth is easily justi�ed in the contexts of prediction

markets or corporate governance, where alternative policies can be measured in terms of concrete

metrics like \estimated revenue in �ve years," and these metrics can be communicated to voters.

That said, some decisions inherently rely on other subjective criteria that we do not capture.

Third, again like previous papers (Kahng et al. 2021, Caragiannis and Micha 2019, Becker et al.

2021), we assume that voters vote independently. Admittedly, this is not a realistic assumption;

relaxing it, as it was relaxed for the classic Condorcet Jury Theorem (H•aggstr•om et al. 2006, Nitzan

and Paroush 2017), is a natural direction for future work.

Fourth, our models do not take strategic behaviors into account. In the same vein, our experi-

ments do not involve explicit incentives and, while we do not have reasons to believe that signi�cant

strategic voting occurs, studying it these issues is beyond the scope of this work. It would be of

interest to extend our results to a more game-theoretic setting, and relate them to work focusing

on game-theoretic issues in liquid democracy (Bloembergen et al. 2019, Zhang and Grossi 2021,

Dhillon et al. 2023). Along those lines, experiments with monetary incentives would be interesting.

Fifth, our framework for stochastic delegations open interesting directions for more research. For

instance, one could characterize all the delegation models satisfying positive gain and do no harm.

One may also consider more general local-delegation models that would depend on the competences

of all voters.

More generally, our work aims to provide a better understanding of a prominent shortcoming

of liquid democracy: concentration of power. But there are others. For example, any voter can

see the complete delegation graph under current liquid democracy systems | a feature that helps

voters make informed delegation decisions (because one's vote can be transitively delegated). This

may lead to voter coercion, however, and the tradeo� between transparency and security is poorly

understood.

Finally, to summarize, we have introduced a general framework to investigate stochastic dynamics

in liquid democracy and proved new conditions for the convergence of weighted majorities; we

then identi�ed regimes in which liquid democracy leads to correct outcomes with high probability.

In that sense, our work is to liquid democracy what the Condorcet Jury Theorem is to direct

democracy. There are many reasons to be excited about the potential of liquid democracy (Blum

and Zuber 2016). We believe that our results provide another such reason and hope that our

techniques will be useful in continuing to build the theoretical and empirical understanding of this

compelling paradigm.
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Appendix

A. Hoe�ding's Inequality

Throughout many of the proofs, we will make use of the following well-known concentration inequal-

ity (Hoe�ding 1963):

Lemma 3 (Hoe�ding's Inequality) . Let Z1 ; � � � ; Zn be independent, bounded random variables with

Z i 2 [a;b] for all i, where �1 < a � b < 1 . Then

P

"
1
n

nX

i =1

Z i � E[Z i ] � t

#

� exp
�

�
2nt 2

(b� a)2

�

and

P

"
1
n

nX

i =1

Z i � E[Z i ] � � t

#

� exp
�

�
2nt 2

(b� a)2

�

for all t � 0:
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B. Missing Proofs

B.1. Proof of Lemma 1

We establish the two properties separately.

Probabilistic do-no-harm: We �rst show that a model M that satis�es conditions (1) and (2) satis�es

probabilistic do no harm. Fix an arbitrary competence distribution D 2 D and let � and C be such that

(1) and (2) are satis�ed. Without loss of generality, suppose that C(n) � n for all n, as replacing any larger

values of C(n) with n will not a�ect (1) (since max-weight(Gn ) � n for all graphs Gn on n vertices). Fix

"; � > 0. We must identify some n0 such that for all n � n0 , PD ;M;n [gain(~pn ;Gn ) � � " ] > 1� � .

We will begin by showing there existsn1 2 N such that for all instances (~pn ;Gn ) on n � n1 voters, if both

max-weight(Gn ) � C(n) and (11)
nX

i =1

weighti (Gn ) � pi �
nX

i =1

pi � 2�n; (12)

then

gain(~pn ;Gn ) � � ": (13)

Since (11) and (12) each hold with probability 1� o(1) by (1) and (2), for su�ciently large n, say n � n2 ,

they will each occur with probability at least 1 � �=2. Hence, by a union bound, for alln � n2 , they both

occur with probability at least 1 � � . By taking n0 = max( n1 ; n2), this implies that probabilistic do no harm

is satis�ed.

We now prove that, for su�ciently large n, (11) and (12) imply (13). First, we will show that

gain(~pn ;Gn ) � � P~p n [X D
n > X F

G n
]: (14)

Indeed, we have that

P~p n [X D
n > n= 2] = P~p n [X D

n > n= 2;X F
G n

> n= 2] + P~p n [X D
n > n= 2;X F

G n
� n=2]

� P~p n [X F
G n

> n= 2] + P~p n [X D
n > X F

G n
]

where the �rst transition holds by the law of total probability, and the second because the corresponding

events are contained in each other. That is,

�
X D

n > n= 2;X F
G n

> n= 2
	

�
�

X F
G n

> n= 2
	

and
�

X D
n > n= 2;X F

G n
� n=2

	
�

�
X D

n > X F
G n

	
:

Re-arranging the terms above yields (14).

Hence, for our purpose, it su�ces to show that (11) and (12) imply P~p n

�
X D

n > X F
G n

�
� ": Intuitively, we

will use (12) to show the expected value ofX D
n is well below the expected value ofX F

G n
: Then we will show

both X D
n and X F

G n
concentrate well around their means, where for the latter we will need (11). Together,

these observations imply that X F
G n

> X D
n with high probability.
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Fix an instance (~pn ;Gn ) on n voters satisfying (11) and (12). We will show that for su�ciently large n,

P~p n

"

X D
n <

nX

i =1

pi + �n

#

> 1� "=2 (15)

and

P~p n

"

X F
G n

>
nX

i =1

weighti (Gn ) � pi � �n

#

> 1� "=2: (16)

Note that since (12) holds for this instance,
P n

i =1 pi + �n �
P n

i =1 weighti (Gn ) � pi � �n . Therefore, when both

events whose probability is considered in (15) and (16) hold,X D
n � X F

n . Hence,

P~p n [X D
n � X F

G n
] � P~p n

"

X D
n <

nX

i =1

pi + �n;X F
G n

>
nX

i =1

weighti (Gn ) � pi � �n

#

> 1� "

where the last inequality holds by a union bound. This implies that P~p n [X D
n � X F

G n
] < " , as needed.

It remains to be shown that (15) and (16) hold for su�ciently large n. For (15), this follows directly from

Hoe�ding's inequality (Lemma 3 in Appendix A). To prove (16), �rst note that, as shown in Kahng et al.

(2021),

Var~p n

�
X F

G n

�
=

nX

i =1

weighti (Gn )2 � pi (1 � pi )

�
1
4

�
nX

i =1

weighti (Gn )2

�
1
4

�
dn=C ( n ) eX

i =1

C(n)2

< nC (n) 2 o(n2);

where the �rst inequality holds because p(1 � p) is upper bounded by 1=4, the second because
P n

i =1 weighti (Gn ) � n with each weighti (Gn ) � C(n) so the value is maximized by setting as many terms to

C(n) as possible, and the �nal inequality holds becauseC(n) � n.

Hence, by Chebyshev's inequality,

P~p n

�
X F

G n
� E~p n

�
X F

G n

�
� �n

�
�

Var~p n [X F
G n

]
(�n )2

:

This bound is o(1) because the numerator iso(n2) and the denominators is 
( n2). This implies that for

su�ciently large n, it will be strictly less than "=2, so (16) holds.

Probabilistic positive gain: Fix a distribution D 2 D and an � 2 (0;1) such that (3) holds. We want to

show that M satis�es probabilistic positive gain. Since D 2 D, it also satis�es (1) for some C. We show

below that there exists an n3 such that all instances (~pn ;Gn ) with n � n3 voters satisfying (11) for which
P n

i =1 pi + �n � n=2 �
P n

i =1 weighti (Gn ) � pi � �n , we have that gain(~pn ;Gn ) � 1 � " . As with the DNH part

of the proof, since the events of (1) and (3) each hold with probability 1� o(1), for su�ciently large n, say

n � n4 , they each occur with probability at least 1 � �=2. Hence, by a union bound, for alln � n4 , they both

occur with probability 1 � � . For n0 = max( n3 ; n4), probabilistic positive gain is satis�ed.
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It remains to show that that if (1) and (3) hold for a speci�c instance ( ~pn ;Gn ), then gain(~pn ;Gn ) � 1 � "

for su�ciently large n. SinceD 2 D, (15) and (16) are both satis�ed for su�ciently large n. When
nX

i =1

pi + �n � n=2 �
nX

i =1

pi � weighti (Gn ) � �n

is satis�ed as well, we get that P~p n [X D
n > n= 2]< "= 2 and P~p n

�
X L

G n
> n= 2

�
> 1� "=2, so gain(~pn ;Gn ) > 1� "

is immediate. Q.E.D.

B.2. Missing Details from the Proof of Lemma 2

The �rst missing details was the proof of Equation (5),

E[W ( k )
T ] =

�( T + p)�( k)
�( p+ k)�( T)

for all k � T , where � represents the Gamma function. The second was showing

T X

k =1

P[W ( k )
T > n � ] = o(1):

Recall that W ( k )
k = 1 and we have the following recurrence for allt > k :

W ( k )
t =

8
<

:
W ( k )

t � 1 + 1 with probability
p�W ( k )

t � 1

t � 1

W ( k )
t � 1 with probability 1 �

p�W ( k )
t � 1

t � 1 :

By the tower property of expectation, for all t � k + 1,

E[W ( k )
t ] = E[E[W ( k )

t j W ( k )
t � 1 ]]

= E[W ( k )
t � 1(1 +

p
t � 1

)]

= E[W ( k )
t � 1 ](1 +

p
t � 1

):

Thus, by a straightforward induction argument and the fact that E[W ( k )
k ] = 1,

E[W ( k )
T ] = E[W ( k )

k ]
T � 1Y

i = k

(1 +
p
i
) =

T � 1Y

i = k

(1 +
p
i
):

Expanding this, we have
T � 1Y

i = k

(1 +
p
i
) =

T � 1Y

i = k

i + p
i

=
1

Q T � 1
i = k i

�
T � 1Y

i = k

(i + p)

=
(k � 1)!
(T � 1)!

�
Q T � 1

i =0 (i + p)
Q k � 1

i =0 (i + p)

=
(k � 1)!
(T � 1)!

�( p+ T )
�( p)

�( k + p)
�( p)

=
�( T + p)�( k)
�( p+ k)�( T)

;

where the fourth equality holds because �(x + 1) = x�( x) for all x 2 R, and the last uses the fact that

�( n) = ( n � 1)! for all n 2 N. This proves (5).
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For the second missing detail, can now use Markov's inequality to show that for allk,

Pr
h
W ( k )

T > T �
i

�
E[W ( k )

T ]
T �

=
1

T �
�

�( T + p)
�( T)

�
�( k)

�( k + p)
:

Hence,
T X

k =1

Pr[W ( k )
T > T � ] �

T X

k =1

1
T �

�
�( T + p)

�( T)
�

�( k)
�( k + p)

=
1

T �
�

�( T + p)
�( T)

�
T X

k =1

�( k)
�( k + p)

:

What remains to be shown is that

1
T �

�
�( T + p)

�( T)
�

T X

k =1

�( k)
�( k + p)

= o(1):

To do this, we will use Gautschi's inequality (Gautschi 1959) which states that for all x > 0, sincep 2 (0;1),

(x + p� 1)p �
�( p+ x)

�( x)
� (x + p)p

We then have that

1
T �

�
�( T + p)

�( T)
�

T X

k =1

�( k)
�( k + p)

�
(T + p)p

T �
�

T X

k =1

1
(k + p� 1)p

=
(T + p)p

T �
�

 
1
pp

+
1

(1 + p)p
+

T X

k =3

1
(k + p� 1)p

!

�
(T + p)p

T �
�

 
1
pp

+
1

(1 + p)p
+

T X

k =3

1
(k � 1)p

!

=
(T + p)p

T �
�

 
1
pp

+
1

(1 + p)p
+

T  � 1X

k =2

1
kp

!

�
(T + p)p

T �
�

 
1
pp

+
1

(1 + p)p
+

T X

k =2

1
kp

!

�
(T + p)p

T �
�
�

1
pp

+
1

(1 + p)p
+

Z T 

1

1
xp

dx
�

=
(T + p)p

T �
�
�

1
pp

+
1

(1 + p)p
+

x1� p

1� p

�
�
�
T 

1

�

=
(T + p)p

T �
�
�

T  (1 � p)

1� p
+

1
pp

+
1

(1 + p)p
�

1
1 � p

�
:

Notice that asymptotically, this upper bound is O(T � � + p+  � (1 � p) ). By our choice of � , � > p +  � (1 � p), so

this implies that it is is o(1), as desired.

B.3. Missing Details from the Proof of Theorem 1

The missing details were showing that the Upward Delegation Mechansim satis�ed (2) and (3).

Upward Delegation satis�es (2)

We will show there exists � 2 (0;1) such that
P n

i =1 weighti (Gn ) � pi �
P n

i =1 pi � 2�n with high probability,

so (2) is satis�ed. Note that in the present scheme, cycles are impossible, so do need to worry about ignored

voters.

Since D is a continuous distribution, there exists a < b such that � a := D[f p : p < ag] > 0 and � b :=

D[f p : p > bg] > 0. Let Na;n (~pn ) be the number of voters in ~pn with competence pi < a and Nb;n (~pn ) be the
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number of voters with competencepi > b. When we sample competencies, since each is chosen independently,

Na;n � Bin( n; � a ) and Nb;n � Bin( n; � b). By Hoe�ding's inequality (Lemma 3) and the union bound, with

probability 1 � o(1), there will be at least � a =2 � n voters with competencepi < a and � b=2 � n voters with

competencepi > b. Indeed,

Dn [Na;n >
n� a

2
;Nb;n >

n� b

2
] = 1 � D n [f Na;n �

n� a

2
g [ f Nb;n �

n� b

2
g]

� 1 � (Dn [Na;n �
n� a

2
] + Dn [Nb;n �

n� b

2
])

� 1 � exp(�
n� 2

a

2
) � exp(�

n� 2
b

2
);

(17)

where the �rst line comes from De Morgan's law, the second from the union bound, and the last from

Heo�ding's inequality (Lemma 3).

Conditioned on this occurring, each voter with competencepi < a has probability at least p� b=2 of dele-

gating to a voter with competence at leastb. As they each decide to do this independently, the numberNab;n

of n voters deciding to do this stochastically dominates a random variable following the Bin(� a =2� n;p � � b=2)

distribution. We can again apply Hoe�ding's inequality to conclude that with probability 1 � o(1), at least

� a � � b � p=8� n voters do so. Indeed,

D[Nab;n >
np� a � b

8
j Na;n >

n� a

2
;Nb;n >

n� b

2
] � D [Bin(

n� a

2
;
p� b

2
) >

np� a � b

8
]

� 1 � exp(�
np2 � a � 2

b

4
);

(18)

where the �rst inequality holds becauseNab;n stochastically dominates the corresponding binomial random

variable and the second holds by Hoe�ding's inequality. Finally, using (17) and (18), we have

D[Nab;n >
np� a � b

8
] � D [Nab;n >

np� a � b

8
j Na;n >

n� a

2
;Nb;n >

n� b

2
]

� D[Na;n >
n� a

2
;Nb;n >

n� b

2
]

� 1 � o(1):

Under these upward delegation models, delegations can only increase the total competence of all voters.

Hence,
nX

i =1

delsi (Gn ) � pi �
nX

i =1

pi � (b� a)Nab:n :

Each of these� a � � b � p=8 � n voters results in a competence increase of at leastb� a. Hence, under these

high probability events, the total competence increase is at least (b � a) � � a � � b � p=8 � n. Indeed, since

D[Nab;n > np� a � b
8 ] = 1 � o(1), this implies D[

P n
i =1 delsi (Gn ) � pi �

P n
i =1 pi > np� a � b

8 ] = 1 � o(1). By choosing

� = p� a � b
8 (b� a), we see that there is an� � n increase in competence with high probability, as needed.

We have proved that for any continuous distribution D, and for well-behaved realizations of~pn which

occur with high probability, the graph generated from the random delegation process yields an increase in

the expected sum of the votes of at least� � n. We can then conclude that M U
p satis�es Equation (2) with

respect to the class of continuous distributions.

Upward Delegation satis�es (3)
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We now show that there exists a distribution D such that
P n

i =1 pi + �n � n=2 �
P n

i =1 weighti (Gn ) � pi � �n

with probability 1 � o(1) for some � > 0. This implies that the model satis�es probabilistic positive gain by

Lemma 1, and will conclude the proof.

We take D to be D � , the uniform distribution U[0;1 � 2� ] for some small 0< � < p= 512: Let � = �= 2.

Clearly, � D � , the mean of D � , is 1=2 � �: Since eachpi
i:i:d:� D � , the pi s are bounded independent random

variables with mean 1=2� � , so Hoe�ding's inequality directly implies that
P n

i =1 pi � n=2� n�= 2 = n=2� n�

with high probability.

Now consider EF , the event consisting of instances (~pn ;Gn ) such that
P n

i =1 weighti (Gn ) � pi � n=2 +

n�: We denote by ED the event that
P n

i =1 pi � n=2 � 3n�= 2: The same reasoning as before implies that

PrD � ;M U
p ;n (ED ) = 1 � o(1).

Let a = 1=4 � �= 2 and b= 1=2 � � , so we have that � a := D � [pi < a ] = 1=4 and � b := D � [pi > b] = 1=2:

We proved in the preceding derivation that
P n

i =1 weighti (Gn ) � pi �
P n

i =1 pi > np� 1 � b
8 = np

64 (1 � � ) with high

probability. Hence, if both this and ED occur, which is the case with high probability, by the union bound,

it follows that
P n

i =1 weighti (Gn ) � pi > n= 2 + n( p
128 (1 � � ) � 3�= 2) with high probability.

Since� < p
512 < 1=2, we have that

p
128

(1 � � ) � 3�= 2>
p

256
� 3�= 2> 2� � 3�= 2 = �= 2 = �;

and we can conclude thatEF occurs with high probability. Hence, M U
p satis�es Equation (3).

B.4. Missing Details from the Proof of Theorem 2

We show that the Con�dence-based Model satis�es (3).

Con�dence-Based Delegation satis�es(3)

We �nally show there exists a distribution D such that
P n

i =1 pi + �n � n=2 �
P n

i =1 weighti (Gn ) � pi � �n

with probability 1 � o(1): This implies that the model M C
q satis�es probabilistic positive gain by Lemma 1.

Using the notation of the analogous proof in Section 3, letD � = U[0;1 � 2� ] for � 2 [0; 1=2). Note that as

a function of � ,
ED � [q+ ]

ED � [�q] , the expected competence conditioned on not delegating, is continuous. Moreover, if

� = 0, then
ED 0 [q+ ]
ED 0 [�q]

> � D 0 = 1=2:

Hence, for su�ciently small � > 0,
ED � [q+ ]
ED � [�q]

> 1=2> � D � :

We chooseD � to be our distribution for this choice of � . As in the previous section, let � �
D �

=
ED � [q+ ]

E[�q] .

Note that � D � = 1=2� � . Let  = min(
1=2� � D �

2 ;
� �

D �
� 1=2

2 ) and � =  . By the earlier argument for (2), we have

that with high probability
nX

i =1

pi � n(� +  ) � n=2� �n

and
nX

i =1

weighti (G)pi � n(� � �  ) � n=2 + �n:

By the union bound, we have that both occur simultaneously with high probability, so (3) holds.
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B.5. Missing Details from the Proof of Theorem 3

We �rst show the remainder of the General Continuous Model satisfying (1).

The eigenvector we consider is~� = ( � 1 ; : : : ; � B ) (which has nonnegative entries, as each� � is a probability).

We show it has eigenvaluep (1+ " ) 3

1� 2" , strictly less than 1 due to our choice of" . We show it has eigenvalue

p (1+ " ) 3

1� 2" , strictly less than 1 due to our choice of" . Indeed, we have that

(M~� ) � =
BX

� 0=1

� � ~' (�; � 0)� � 0 = � � p
(1 + ")3

1� 2"

by the de�nition of ~': Hence,~� is our desired eigenvector.

SinceXP
M;� is sub-critical for all � , we have that there is somec such that for all � 2 [B ], P[XP

M;� � clog(n)] =

1� o(1=n). We take C(n) = clog(n).

Now we consider our branching process,XD
~p;i . To make the comparison, we will need some minimal con-

centration properties. We �rst show that the sampled competencies~p satisfy these properties with high

probability, and then show that, conditioned on these properties, the branching processXD
~p;i is easily com-

parable to a Poisson process. The properties are the following:

1. For each voter i 2 [n],
P

j 6= i ' (pi ; pj ) � (1 � " ) � n.

2. For each type � 2 [B ], the number of voters of type � , jf i j pi 2 S� gj � (1 + ")� � n.

For the �rst property, �x the competence pi of a single voteri . Then when sampling thepj s,
P

j 6= i ' (pi ; pj )

is the sumn � 1 independent variables, all in the interval [L;U ], with mean 1. Hence, by Hoe�ding's inequal-

ity, for all competencies c, Dn [
P

j 6= i ' (pi ; pj ) � (1 � " )n j pi = c] = 1 � o(1=n), where the o(1=n) term is

independent of c. By the law of total probability, this implies that even when pi is sampled as well, the

1 � o(1=n) bound continues to hold. By a union bound over all n voters, this holds for everybody with

probability 1 � o(1).

For the second property, note that the number of voters of type � follows a Bin(n; � � ) distribution. A

simple application of Hoe�ding's inequality implies that for this � , jf i j pi 2 S� gj � (1+ ")� � n (note that this

holds even in the extreme cases where� � = 0 or � � = 1). As the number B of types is �xed and independent

of n, a union bound over all B types implies this holds for all � with probability 1 � o(1).

Now �x some voter competencies~psuch that both properties hold. We will �rst upper bound the probability

a voter of type � delegates to a voter of type� 0. Hence, we can compare our branching process to one with

these larger probabilities, and this will only dominate our original process.

To that end, since jD t � 1 j = t � 1 � t (recall that D t � 1 consists of the dead voters at timet � 1), using the

�rst property, we have that for all i 2 [n],

X

j 2 [n ]n( D t � 1 [f i g)

' (pi ; pj ) � (1 � " )n � U � t:

Hence, as long ast � "n=U ,
P

j 2 [n ]n( D t � 1 [f i g) ' (pi ; pj ) � (1 � 2" )n.

Including the fact that ' (pi ; pj ) � ~' (pi ; pj ) for all pi and pj , we have that for all time steps t � "n=U;

p �
' (pi ; pj )

P
k 02 [n ]n( D t � 1 [f k g) ' (pi ; pk 0)

�
p
n

�
~' (pi ; pj )
(1 � 2" )

:
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Note that for su�ciently large n, C(n) � "n=U , so from now on we restrict ourselves to suchn.

Further, note that by the second property, there will never be more than (1 + ")� � n neutral voters of type

� . Hence, if we take a voter of type� 0 at time step t � C(n), the number of children it will have of type � will

be stochastically dominated by a Bin((1 + ")� � n; p
n � ~' ( p i ;p j )

(1 � 2" ) ), and this is independent for each� . As n grows

large, this distribution approaches a Pois(p (1+ " )
1� 2" ~' (�; � 0)). In particular, this means that for su�ciently large

n, it will be stochastically dominated by a Pois(p (1+ " ) 2

1� 2" ~' (�; � 0)) distribution (note the extra (1 + ") factor).

Hence, if voter i is of type � , up to time t � C(n), XD
~p;i is dominated by XP

M;� , so

PD ;M S
p;' :n [XD

~p;i � C(n)] � PD ;M S
p;' :n [XP

M;� � C(n)] = 1 � o(1=n):

A union bound over all n voters tells us this is true for all voters simultaneously with probability 1 � o(1),

as needed.

The Continuous General Delegation Model satis�es(2).

To show (2) holds, we �rst show the following.

Let � D be the mean of the competence distributionD. For a �xed x, let ' +
x (y) be the function ' (x; y) � y.

We show that there is somec > 0 such that for all x 2 [0;1],

ED [' +
x ] � � D + c: (19)

Indeed, if we view ED [' +
x ] as a function of x for x 2 [0;1], �rst note that it is a continuous function on

a compact set, and hence it attains its minimum. Further, for all x 2 [0;1], since ' (x; y) and y are both

increasing functions ofy, by the FKG inequality Fortuin et al. (1971),

ED [' + ] > ED [' (x; �)] � � D = � D ;

since, by assumption,ED [' (x; �)] = 1. Hence, this attained minimum must be strictly larger than � , implying

(19).

Since ' (x; y) is normalized so that Ey �D [' (x; y)] = 1, Ey �D [' (x; y) � y] is the expected competence of the

voter to whom someone of competencex delegates to (prior to other competencies being drawn). Hence, (19)

tells us that \on average", all voters (regardless of competence) tend to delegate to those with competence

strictly above the mean. Ideally, we would choose� � c=2 and hope that some concentration result tells us

that the weighted competencies after delegation will be strictly above� + c=2 (the mean of all competencies

will be close to� by standard concentration results). However, proving this concentration result is surprisingly

subtle, as there are many dependencies between di�erent voter delegations. Indeed, if one voter with high

competence and many delegations chooses to delegate \downwards" (that is, to someone with very low

competence), this can cancel out all of the \expected" progress we had made thus far. Hence, the rest of

this proof involves proving concentration does in fact hold. We prove this by breaking up the process of

sampling instances into much more manageable pieces, where, in each, as long as nothing goes \too" wrong,

concentration will hold.
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In particular, we will prove that for all  > 0, with high probability,
nX

i =1

weighti (G) � pi �
nX

i =1

pi � (c(1 � p) �  )n: (20)

Fix such a  . As in the previous part, �x " > 0 which will paramaterize our steps. We will later choose"

su�ciently small to get our desired result (precisely " such that 6" + " 2 <  ). By choosing  < c (1 � p), this

value is positive, so we can choose� = c(1 � p) � 
2 which proves Equation (2)

To that end, we de�ne a sequence of six sampling steps that together are equivalent to the standard

sampling process with respect toD and M S
p;' . In each step, we will show that with high probability, nothing

\goes wrong", and conditioned on nothing going wrong in all these steps, we will get the� improvement

that we desire. The six steps are as follows:

1. Sample a setM � [n] of voters that choose not to delegate. Each voter is included independently with

probability p.

2. Sample competenciespi for i 2 [n] nM . Each pi is sampled i.i.d. from D.

3. Sample competenciespj for j 2 M . Each pj is sampled i.i.d. from D.

4. Sample a setR � [n] nM of delegators that delegate to those inM . Each voter i 2 [n] nM is included

independently with probability
P

j 2 M ' ( p i ;p j )
P

j 2 [n ]nf i g ' ( p i ;p j )
, that is, the total ' weight they put on voters in M divided

by the total ' weight they put on all voters.

5. Sample delegations of voters in [n]n(M [ R). At this point, we are conditioning on such voters delegating,

and when they do delegate, they do so to voters in [n] nM . Hence, for eachi 2 [n] n(M [ R), they delegate

to j 2 [n] n(M [ f ig) with probability ' ( p i ;p j )
P

j 02 [n ]n ( M [f i g ) ' ( p i ;p j 0) .

6. Sample delegations of voters inR. At this point, we are conditioning on such voters delegating to those

in M . Hence, for eachi 2 R, they choose to delegate toj 2 M with probability ' ( p i ;p j )
P

j 02 M ' ( p i ;p j 0) .

We now analyze each step, describing what could \go wrong". LetE1 ; : : : ;E6 be the events that nothing goes

wrong in each of the corresponding steps. We de�ne these events formally below. Our goal is to show that

PD ;M S
p;' ;n [E1 \ � � � \ E 6 ] = 1 � o(1).

� Let E1 be the event that (p� " ) � n � j M j � (p+ ") � n: Note that M is the sum ofn independent Bernouilli

random variables with success probabilityp: It follows directly from a union bound over both variants of

Hoe�ding's inequality that

PD ;M S
p;' ;n [(p � " ) � n � j M j � (p+ ") � n] = 1 � o(1):

� Let E2 be the event that
P

i 2 [n ]nM pi � n(� + " )(1 � p+ "): Note that
P

i 2 [n ]nM pi is the sum of n � j M j

i.i.d. random variables with mean �: Conditioning on event E1 ; jM j is lower bounded byn(p � " ), implying

that n � j M j � n(1 � p+ ") as well. It follows from Lemma 3 that

PD ;M S
p;' ;n

2

4
X

i 2 [n ]nM

pi � n(� + " )(1 � p+ ")

�
�
�
�
�
�

E1

3

5 = 1 � o(1)

which, combined with PD ;M S
p;' ;n [E1 ] = 1 � o(1), proves that E1 \ E 2 occurs with probability 1 � o(1).

� Let E3 be the event consisting of all instances (~p;G) such that
P

j 2 M ' (pi ; pj ) � pj
P

j 2 M ' (pi ; pj )
�

(1 � " )
(1 + ")

(� + c)
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for all i 2 [n] nM .

We showE3 occurs with high probability conditional on E1 and E1 (conditioning on E2 is unnecessary. but

makes the �nal statement easier). Fix a set of votersM and pi for i 2 [n] nM satisfying E1 and E2 . For each

i 2 [n] nM , we will show that with probability 1 � o(1=n), when we sample thepj s for j 2 M , they satisfy

X

j 2 M

' (pi ; pj ) � j M j(1 + ") (21)

and
X

j 2 M

' (pi ; pj ) � pj � j M j(1 � " )( � + c): (22)

(21) follows from the fact that
P

j 2 M ' (pi ; pj ) is the sum of jM j bounded independent random variables

with mean Ey �D [' (pi ; y)] = 1 : By Hoe�ding's inequlaity, since jM j is linear in n,
P

j 2 M ' (pi ; pj ) is at most

jM j(1 + ") with probability 1 � o(1=n).

(22) follows from the fact that
P

j 2 M ' (pi ; pj ) � pj is also the sum ofjM j bounded independent random

variables with mean ED [' +
p i

]. Again, since we have conditioned onE1 , jM j is lower bounded by (p � " )n,

which by Hoe�ding's inequality implies that
P

j 2 M ' (pi ; pj )pj is at least jM j(1 � " )ED [' p i ] with probability

1 � o(1=n).

Finally, we can conclude via a union bound that
P

j 2 M ' ( p i ;p j ) � p jP
j 2 M ' ( p i ;p j ) � (1 � " )

(1+ " ) (� + c) with probability 1 � o(1=n)

for any i 2 [n] nM . Hence, by another union bound over the at mostn voters i 2 [n] nM ,
P

j 2 M ' ( p i ;p j ) � p jP
j 2 M ' ( p i ;p j ) �

(1 � " )
(1+ " ) (� + c) for all i 2 [n] nM with high probability.

By the law of total probability, E3 conditioned on E1 and E2 occurs with probability 1 � o(1); which proves

that E1 \ E 2 \ E 3 occurs with probability 1 � o(1) by the chain rule.

� Let E4 be the entire sample space. Nothing can \go wrong" during this sampling step. So trivially,

E1 \ E 2 \ E 3 \ E 4 occurs with probability 1 � o(1).

� Let E5 be the event that delsi (G) � C(n) for all i 2 [n] nM and total-weight(G) � n � C(n)2 log(n) in the

subgraph G sampled (i.e., with delegations only from voters not inR or M ). We will show E5 occurs with

high probability even when we sample a full delegation graph (that is, samples delegations for all voters),

which implies it continues to hold even when we sample only some delegations (recall that at this step we

have only sampled delegations from voters in [n] n(M [ R)).

The proof of this is very similar to the one in Theorem 2, with one extra step to allow for di�erent '

weights.

It was proved in the previous part of this proof that, for all voters i , we have that delsi (G) � C(n) with

probability 1 � o(1) (not conditioned on anything) when we sample entire delegation graphs, so we can safely

condition on this fact. We now prove that PD ;M S
p;' ;n [total-weight(Gn ) � n � O(log3 n) j delsi (G) � C(n)] =

1� o(1).

We begin by bounding the number of voters that end up in cycles. Fix some voteri , and let us begin by

sampling their delegation tree.

Since we are conditioning on the tree having size at mostC(n), the most weight that voter i can place

on all of the voters in i 's delegation tree isU � C(n). The minimum weight that i can place on all voters is
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L(n � 1). Hence, the probability that i delegates to someone ini 's tree conditional the delegation tree having

size at mostC(n) is at most p� U �C ( n )
L � ( n � 1) . Sincei was arbitrary, this implies that the expected number of voters

in cycles can be at mostn � p � U �C ( n )
L � ( n � 1) 2 O(log n).

Applying Markov's inequality just as in the analogous proof in the previous section, the probability that

more than log2 n voters are in cycles is at mostnp UC ( n )
L ( n � 1) log 2 n = O(1=logn) = o(1). Further, the total number

of people that could delegate to voters in cycles is at mostC(n) times the number of voters in cycles. Hence,

with probability 1 � o(1), there are at most C(n) � log2 n voters delegating to those in cycles. This implies

the desired bound. Hence, we have proved thatPD ;M S
p;' ;n [E5 ] = 1 � o(1). Since we have already shown that

PD ;M S
p;' ;n [E1 \E 2 \E 3 \E 4 ] = 1 � o(1), a union bound implies that E1 \E 2 \E 3 \E 4 \E 5 occurs with probability

1 � o(1) as well.

� We now consider the sixth step. To de�ne E6 , we need some new notation. Fix competencies~p and a

partial delegation graph G such that (~p;G) is in the �rst �ve events. We de�ne Qi for i 2 R to be the random

variable representing the competence of the voter to whomi delegates. Since we knowi delegates to a voter

in M , note that

Qi (G) = pj with probability
' (pi ; pj )

P
j 02 M ' (pi ; pj 0)

for all j 2 M:

Let E6 be the event consisting of all instance (~p;G) such that that
P

i 2 R delsi (G) � Qi (G) � (1 � " ) 2

1+ " (� +

c)(1 � p � 2" ) � n. We show that PD ;M S
p;' ;n [E6 j E1 \ � � � \ E 5 ] = 1 � o(1). This, combined with the the fact

PD ;M S
p;' ;n [E1 \ � � � \ E 5 ] = 1 � o(1) (shown earlier), implies that PD ;M S

p;' ;n [E1 \ � � � \ E 6 ] = 1 � o(1). It follows

from the de�nition of Qi that

E[Qi ] =
X

j 2 M

' (pi ; pj )
P

j 02 M ' (pi ; pj 0)
� pj =

P
j 2 M ' (pi ; pj ) � pj

P
j 2 M ' (pi ; pj )

:

By conditioning on E3 , we have that E[Qi ] � (1 � " )
(1+ " ) (� + c) for each i 2 R. Hence, E[

P
i 2 R delsi (G) � Qi ] �

(n � j M j � C(n)2 log(n)) � 1+ "
1� " � (� + c), since we are conditioning onE3 and E5 . Further, for su�ciently large

n, C(n)2 log(n) � "n ; since we are conditioning onE1 , jM j � (p+ ")n, so we have that for su�ciently large n,

E[
X

i 2 R

delsi (G) � Qi ] � (1 � p � 2" ) �
1 + "
1� "

� (� + c) � n 2 
( n):

Next, consider Var[
P

i 2 R delsi (G) � Qi ]. Since eachQi takes on values in [0;1], Var[Qi ] � 1. Further, each

summand is independent, as eachQi is independent and we have �xedG, so we can can viewdelsi (G) as a

constant. Hence, Var[
P

i 2 R delsi (G) � Qi ] �
P

i 2 R delsi (G)2 2 o(n2) since, for all i , delsi (G) � C(n) 2 O(log n)

and
P

i delsi (G) � n. Hence,

PD ;M S
p;' ;n [

X

i 2 R

delsi (G) � Qi <
(1 � " )2

1 + "
(� + c)(1 � p � 2" ) � n]

� PD ;M S
p;' ;n [

X

i 2 R

delsi (G) � Qi < (1 � " )E[
X

i 2 R

delsi (G) � Qi ]]

�
Var[

P
i 2 R delsi (G) � Qi ]

" 2 � E[
P

i 2 R delsi (G) � Qi ]2
2 o(1)

where the second inequality is due to Chebyshev's inequality, which iso(1) because the numerator iso(n2)

and the denominator is 
( n2). This implies the desired result.
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Finally, we show that for all instance (~p;G) 2 E1 \ � � � \ E 6 , (2) holds, and hence so does (20). We have

that
P n

i =1 wi (G) � pi =
P

i 2 R delsi (G) � Qi (G) +
P

j 2 M pj , because inG each voter i 2 R delegates all of their

delsi (G) votes to the voter in M with competenceQi (G). Hence,
P n

i =1 wi (G) � pi �
P n

i =1 pi =
P

i 2 R delsi (G) �

Qi (G) �
P

i 2 [n ]n( M [ R ) pi . Since (~p;G) 2 E2 , we have that
P

i 2 [n ]nM pi � n(� + " )(1 � p+ "). Since (~p;G) 2 E6 ,

we have that
P

i 2 R delsi (G) � Qi (G) � (1 � " ) 2

1+ " (� + c)(1 � p � 2" ) � n. Hence, this di�erence is at least

(( � + c)(1 � p � 2" ) � (� + " )(1 � p+ "))n � (c(1 � p) � 3"� � 2"c � (1 � p)" � " 2)n

� (c(1 � p) � 6" � " 2)n

where the second inequality holds because,c;(1 � p); � � 1. By choosing " such that 6" + " 2 �  (" =

min( = 7;1) will do), (20) follows.

The Continuous General Delegation Model Satis�es(3)

We now show that there exists a distribution D and � > 0 such that
P n

i =1 pi + �n � n=2 �
P n

i =1 weighti (Gn ) � pi � �n with probability 1 � o(1): This implies that the model M S
p;' ; n satis�es probabilistic

positive gain by Lemma 1.

As in earlier arguments, let D � = U[0;1 � 2� ] for � 2 [0; 1=2). Note that

f (� ) = inf
x 2 [0 ;1]

�
ED � [' +

x ]
	

� (1 � p) � 3�= 2

is a continuous function of � .

Moreover, f (0) > 0. Hence, for su�ciently small � > 0, f (� ) > 0.

Consider D � for some� > 0 such that f (� ) > 0. Let � = min( �= 2; f (� )=2). Since� D � = 1=2� � , by Hoe�d-

ing's inequality,
P n

i =1 pi � (1=2� �= 2)n � n=2� �n with high probability.

Next, note that we can choosec = inf x 2 [0 ;1]

�
ED � [' +

x ]
	

in order to satisfy (19). Hence, by choosing =

f (� )=2, it follows from (20) that
nX

i =1

weighti (G) � pi �
nX

i =1

pi � (c(1 � p) � f (� )=2)n = (3 �= 2 + f (� )=2)n � (3�= 2 + � )n

with high probability. Further, by Hoe�ding's inequality,
P n

i =1 pi � (1=2 � 3�= 2)n with high probability, so

by the union bound applied to these inequalities,
nX

i =1

weighti (G) � pi � n=2 + �n

with high probability, as needed.
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C. Groups Characteristics

Table 3 Qualitative group descriptions and sizes from regular experiment

Group ID Group Description Group Size

1 Company Employees Present at a Workshop 14
2 Undergraduate Students Present in Class 22
3 Research Department Meeting 19
4 Company Employees Present at a Workshop 27
5 Participants at an Academic Conference 36
6 Participants at an Academic Conference 50
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D. Survey Materials and Flow

This section describes the participant experience of the survey. Figure 3 shows an example of the survey

ow. The green boxes represent the pre and post-survey steps (providing informed consent, name, and

optional background questions). In the �rst stage, participants performed tasks, deciding to either delegate

(providing a name) or vote (answering the eight question). The upper red block exempli�es a task prompt (in

which the options \delegate" and \vote" also appear in a random order). In the second stage, participants

answer additional questions (those they delegated) and optional background questions. Table 4 shows all the

prompts given to participants for each of the tasks. Finally, Figure 4 shows screenshots of the survey from

the participant's perspective.

Figure 3 Example of a survey ow with three tasks.

The entire survey can be found in the OSF repository.
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Table 4 Prompts Presented at the beginning of each task

ID Task Prompts Corresponding
Experiment(s)

T1 You will be shown images of architectural landmarks from around the world, and
asked to select the country where the landmark is located.

1;2;3;4;5;6

T2 You will be provided with short audio �les with theme songs from various movies,
and asked to select the movie it was featured in.

1;2;3;4;5;6

T3 You will be given English idioms, and asked to identify their meaning. An idiom is
a group of words that have a meaning not deducible from those of the individual
words (e.g., rain cats and dogs, see the light).

1; 2; 3;4;5;6

T4 You will be given upcoming sport events (soccer and tennis games), and asked to
predict the games' outcome?

1

T5 You will be given the names of tennis players, and asked to predict which round
they will make it to in the Tennis French Open (Roland Garros), taking place in
May-June 2022?

2;3;4

T6 You will be given the names of tennis players (women and men), and asked to
predict which round they will make it to in the ongoing Wimbledon Tennis Tour-
nament (The Championships, Wimbledon), taking place between June 27 and July
10, 2022.

5

T7 You will be given upcoming European men soccer games and asked to predict the
games' outcome.

6

T8 You will be shown images of ags from around the world, and asked to identify
their country of origin.

6

T9 You will be shown 20 images of famous buildings from around the world, and asked
to estimate the year in which the building was completed.

6

T10 You will be shown images of constellations and asked to identify them. 6
T11 You will be given headlines, and asked to identify the magazine that published the

article, between The Economist and WIRED.
6

T12 You will be given words, and asked to identify the correct synonym corresponding
to each word.

6

T13 You will be asked to listen to audio clips of classical compositions, and asked to
identify the composer.

6

T14 You will be given the names of American states, and be asked to predict whether
the majority of Congress members elected in that state will be Republican or
Democrat.

6

T15 You will be given upcoming NBA games and asked to predict the games' outcome. 6




	Introduction
	Our Contributions and Techniques
	Stochastic Delegations
	Delegation Models
	Component Sizes in Infinite Pólya Urn Processes
	Consistency With Experiments

	Related work

	Model
	Core Lemma
	Strictly Upward Delegation Model
	Confidence-Based Delegation Model
	Continuous General Delegation Model
	Liquid Democracy in Experiments
	Experimental Design
	Experiments and Material
	Survey Flow
	Data Collected

	Delegation and Competence Statistics
	Estimating Competence
	Gender-based statistics

	Estimating the Probability of Delegating as a Function of Competence
	Methods
	Results

	Estimating Weight Function Used to Delegate
	Methods
	Results

	Experimental Conclusions
	Additional Results

	Discussion

	Hoeffding's Inequality
	Missing Proofs
	Proof of Lemma 1
	Missing Details from the Proof of Lemma 2
	Missing Details from the Proof of Theorem 1
	Missing Details from the Proof of Theorem 2
	Missing Details from the Proof of Theorem 3
	Groups Characteristics

	Survey Materials and Flow

	Item Response Rate Theory and Technical Details in Support of comp
	Delegation Graph Examples
	Pairwise Tukey Tests
	Normality Assumptions for Regressions
	Additional tests for sec:methodq
	Additional tests and details for sec:methodphi
	Alternative Bucketing Strategies
	Maximum Likelihood Estimation for e, t
	Kendall tau rank correlation coefficient 
	Task-specific Effects
	Alternative Bucketing Results

	Additional Tests and Statistics
	Robustness Check on Attention
	Frequency of Correctness
	Increase in Competence
	Maximum Weight
	Coalition Analysis

	Pre-study
	Update in the Design for the Main Study
	Recruitment
	Material
	Assessing competence
	Delegation Statistics
	Estimating q and 



