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Abstract

In many social choice applications, information
about individuals’ preferences can only be elicited
using a limited number of pairwise comparisons.
In these cases, the task is twofold: we must first
choose the queries, and then second, we must ag-
gregate the responses to choose an outcome. We
study the problem of designing algorithms for this
setting. To compare the effectiveness of differ-
ent outcomes, we use the metric distortion frame-
work. In addition, we consider various constraints
on the query algorithms, namely, placing restric-
tions on how the choice of the next query may de-
pend on previous answers. Our main contributions
are nearly optimal algorithms for all settings con-
sidered.

1 Introduction

When aggregating a population’s preferences to make a deci-
sion, we must contend with the fact that our access to pref-
erences may be limited. Take as a motivating example Rein-
forcement Learning with Human Feedback (RLHF), a process
used to fine-tune large language models. At a high level, the
goal is to choose model parameters that yield desirable out-
comes according to the participants. We typically learn what
is “desirable” by asking comparison queries, i.e., on prompt
X, do you prefer output y or output z? However, notice that
these responses only give us partial information about the
individuals’ true underlying preferences. It would be com-
pletely infeasible to learn, say, a ranking for each person over
all possible prompt-output combinations. As another exam-
ple, consider the opinion aggregation platform Polis [Small
et al., 2021]. Here, we would like to summarize a commu-
nity’s opinions on an issue (e.g., how should we regulate
Uber?). Participants submit free-form comments (“I think
Passenger Liability Insurance should be mandatory”) and are
shown comments of other users to vote on, either agree or dis-
agree. However, similar to the fine-tuning example, there are
simply too many submissions from other users to feasibly ask
every individual about every comment. In both these exam-
ples, human input is a scarce resource that must be carefully
allocated.

A unifying theme of the applications discussed is that there
are two stages to the aggregation pipeline: first, we must de-
cide which queries to ask each participant, and second, given
the responses, we must choose an outcome. While the field
of computational social choice [Brandt et al., 2016] gives
many tools to understand and design systems for the latter
stage, the main focus of this work is the former. In particu-
lar, we consider the problem of choosing a limited number of
pairwise-comparison queries to effectively aggregate hetero-
geneous preferences.

When selecting the queries, it is crucial to consider var-
ious constraints that a designer might need to satisfy. For
example, on platforms like Polis, it is not guaranteed that we
can interact with a user, then acquire more information from
other users, and later return to the original user for a second
round of queries. For this, we may want algorithms that are
single-pass: the queries asked to earlier users do not depend
on queries to ones arriving later. Another desirable property
a practitioner might want to satisfy is a notion of fairness,
say, the queries asked for each agent to be independent of
the responses of other agents; this can help ensure that in-
teraction with the system remains unaffected by the arrival
time. The same need may also arise from temporal concerns:
if agents all answer simultaneously, we simply do not have
data from the other agents. Conversely, we may want to have
queries be independent of an agent’s own answers, ensuring
an unbiased interaction with the system. Therefore, our main
research questions are:

How can we design a limited number of pairwise
comparison queries to achieve efficient outcomes?
Furthermore, how well can we do so under various
restrictions such as limited rounds of interactions
and which answers a query can depend on?

To understand the effectiveness of various query choices,
we need a way to measure the quality of the outcome. For
this, we turn to the celebrated distortion framework [Procac-
cia and Rosenschein, 2006]. Here, it is assumed that the
comparison feedback submitted by the agents is derived from
more expressive underlying preferences, typically scalar val-
ues. The more expressive values give rise to concrete ob-
jective values for each of the outcomes. The goal is to de-
sign a procedure that minimizes distortion, the worst-case
ratio between the best possible objective value and the ob-
jective value of the chosen outcome. Without additional as-



sumptions, achieving bounded distortion becomes impossi-
ble, even with complete knowledge of each agent’s ranking.
In this work, we make the frequently-made natural assump-
tion that agents have costs induced by distances in an under-
lying metric space [Anshelevich et al., 2018]. Beyond just a
theoretical necessity, this restriction seems especially aligned
with the motivating examples discussed.! To summarize, our
goal is to optimize metric distortion using a limited number
of practical pairwise comparison queries.

1.1 Our approach and results

We assume there are m alternatives, and we can ask each
agent up to ¢ pairwise comparison queries. A pairwise com-
parison query (or simply a query) involves two alternatives
that an agent is asked to rank. Note that if ¢ is quite large
relative to m (e.g., on the order of 2(mlog m)), we can learn
the full ranking of an agent.”> However, in applications like
RLHF and Polis, ¢ is much smaller.

We first show that a query algorithm making at most ¢
queries to each agent, even if it can ask these in an arbi-
trary order with arbitrary dependencies, will incur distortion
Q(m/t) (Section 3.1).

Next, we consider algorithms that match this lower bound.
We are especially interested in algorithms that require few
rounds of interactions, as it may not be reasonable to as-
sume that agents return later in the process after answering
queries. Of particular importance is the extreme case: single-
pass algorithms needing only one round of interaction. Strik-
ingly, we show that there exists a single-pass algorithm that
achieves optimal distortion of O(m/t) (Section 3.2).

Finally, we consider other kinds of restrictions on the
adaptivity of the algorithm, i.e., how the queries depend on
previous answers. We focus on two types of adaptivity.
The first, called inter-agent adaptivity, indicates whether the
queries made to an agent can depend on responses from other
agents. The second one, called intra-agent adaptivity, indi-
cates whether the queries made to an agent can depend on
previous responses from that agent. Here, we devise nearly
tight (up to logarithmic factors) upper and lower bounds for
the optimal distortion achievable under all combinations of
these restrictions (Section 4). The results are summarized in
Table 1. Note that all upper bounds are induced by single-pass
algorithms, while the lower bounds hold for all algorithms,
regardless of the number of passes.

In Polis, as part of the aggregation process, users and com-
ments are mapped to a common low-dimensional feature space rep-
resenting “opinion” space summarizing the various views. Within
opinion space, voters are more likely to approve comments near
them. Hence, Polis is implicitly assuming it is possible to map
users/comments to a metric space. In RLHF, the possible models
generating input/output prompts live in a feature space. An agent is
assumed to give feedback according to a reward function of these
features. If the reward function is concave, it is natural to assume
that an agent has an ideal point maximizing their reward function
and prefers inputs closer to this point.

2This is equivalent to using comparison-based queries to sort a
list. Hence, this can be done via any sorting algorithm, e.g., Merge-
Sort. [Cormen et al., 2001]

Inter- Intra-agent

agent Yes No

Yes o(%) O (2 +logm), Q%)
No O(m™5). o) o (")

Table 1: Summary of results for different inter- and intra-agent adap-
tivity combinations. All upper bounds are achieved with single-pass
rules. All lower bounds hold regardless of the number of passes.

1.2 Related Work

The most closely related work is that of Anagnostides et al.
[2022], who also consider the metric distortion problem while
eliciting preferences. However, the preference elicitation
method differs from ours; they assume that an algorithm can
query two candidates {a, b} and, in response, learns which
of the two candidates a majority of voters prefer. While this
could be implemented in our model, note that this would re-
quire multiple rounds of interaction and also makes additional
restrictions, e.g., all voters will be asked the same queries, and
only the majority winner is given, rather than the magnitude
of this majority. Hence, we are interested in similar questions
under a different query model, which we view as more suited
for our motivating applications.

Slightly further afield is considering metric distortion,
where only partial information about each agent’s ranking
is given. For example, the same work [Anagnostides et al.,
2022] builds on work by Kempe [2020b] where voters re-
veal their top-k candidates for a fixed value £ < m. Kempe
[2020b] also considers the more general problem of b bits
of information being communicated about a ranking using a
communication scheme fixed upfront.

Metric distortion itself (using complete rankings) was in-
troduced by Anshelevich et al. [2015]. They show that no
social choice rule has distortion better than 3, while the well-
known Copeland rule achieves distortion 5, among bounds
for other well-known rules. Followup work proved bounds
for even more rules [Skowron and Elkind, 2017; Goel et al.,
2017], but none beat this barrier of 5. Significant progress
was made by Munagala and Wang [2019], who introduced a
rule achieving distortion 4.236. The gap was finally closed by
Gkatzelis et al. [2020], who gave a rule achieving distortion
3. Anshelevich ef al. [2021] provide a survey of these results,
as well as progress in non-metric distortion more broadly.

In addition to improvements in lowering distortion, other
progress has been made. Kempe [2020a] gives an LP-
duality framework for analyzing the distortion of existing
rules. Kizilkaya and Kempe [2022] and Kizilkaya and Kempe
[2023] both provide new rules achieving optimal metric dis-
tortion requiring much simpler analyses. We build on tech-
niques from Kempe [2020a] as well as the rule of Kizilkaya
and Kempe [2022]; a more in-depth description can be found
when we use them.

Preference elicitation, more broadly, has a rich history in
computational social choice with several variations. A more
general summary can be found in Brandt et al. [2016]; how-
ever, we focus on the most closely related works here. Lu and



Boutilier [2011] has the most similar style pairwise queries
to our model; however, their objective is quite different from
metric distortion. Amanatidis et al. [2021] study the tradeoff
of distortion and query complexity; however, their queries are
quite dissimilar, directly eliciting cardinal values and relative
magnitudes rather than information about the ranking. Pref-
erence elicitation questions are also often studied through the
lens of communication complexity, i.e., the number of bits
that need to be revealed rather than the number of queries
of a specific type. For example, Conitzer and Sandholm
[2005] give the communication complexity of determining
the winner of several common voting rules (where each agent
privately knows their ranking). This has also been applied
to non-metric distortion, where voters can reveal a certain
number of bits about their utilities rather than just the rank-
ings [Mandal et al., 2019, 2020].

2 Model
For s € N, define [s] = {1,2,...,s}.

Metric Voting. We consider the setting of single-winner
elections where we have a set C' = [m] of m candidates
and a set V' = [n] of n voters. We assume there is a
(pseudo)metric® over C' UV characterized by a distance func-
tiond : (CUV)x (CUV) — Rsg. That is, for all
i,5,k € C UV, we have that d(i,7) = 0, d(i,7) = d(j,1),
and d(i,j) < d(i, k) + d(k,j) (the triangle inequality).
Furthermore, each voter ¢ € V has a preference ranking
o; = 0;(1) »=; -+ »=; o;(m) such that a >; b implies that
d(i,a) < d(i,b) — we allow ties to be broken arbitrarily. The
collection of all voters’ preference rankings form a preference
profile ¢ = (01, ...,0,). Aninstance is a tuple (d, o).

Utilitarianism.  Given an instance (d, o), the social cost (or
simply cost) of a candidate ¢ € C is defined as costg(c) :=
> icy d(i,c). When d is clear from context, we may drop
it from the notation by simply writing cost(c). Under this
measure, the optimal candidate is the one minimizing social
cost. We will use the notation opt(d, o) := min.cc costy(c)
for the minimum cost.

Algorithms with Pairwise Comparison Queries. We con-
sider algorithms that do not have direct access to the under-
lying metric nor the preference profile; rather, they are only
aware of C' and V and can learn of voters’ preferences via
a sequence of pairwise comparison queries. That is, the al-
gorithm can choose a voter ¢ and two candidates {a, b} and
learn which candidate voter ¢ prefers, a >; b or b >; a. After
receiving the responses, the algorithm (i.e., a voting rule) re-
turns a candidate c as the winner. More formally, by a slight
abuse of notation, we let \A(d, o) denote the candidate re-
turned by an algorithm A on instance (d, o).

We are interested in algorithms that do not make too many
queries to each voter. If an algorithm makes at most ¢ queries
to each voter ¢, we call it a t-query algorithm.

3A pseudometric is a generalization of a metric that allows two
distinct points to be distance 0 from each other. In other words, we
allow voters and candidates to be at the same location.

Distortion. The quantitative measure of efficiency we in-
vestigate in this work is distortion. For a given instance
(d, o), the distortion of candidate c is defined as

costy(c)

diSt(C | (d,O’)) = W’

i.e., the ratio of the social cost of ¢ to the optimal social cost.
This value is always at least one, and the lower the ratio, the
more efficient the candidate. The distortion of an algorithm
A is defined as

disty, (A) = SUP g0y jc)=m dist(A(d, o) | (d,0)),

where the supremum is over all instances with m candidates
and any number of voters. In other words, the distortion of
an algorithm A is its worst-case guarantee in terms of the
multiplicative approximation to the optimal social cost.

2.1 Algorithm Restrictions

In the setup described so far, an algorithm can make queries
to voters in an arbitrary order, with the option to revisit voters
it has already queried or choose each subsequent query based
on arbitrary prior responses. This flexibility may be costly
or even impractical in certain scenarios. Hence, we are inter-
ested in the optimal distortion of algorithms subject to various
constraints. We describe the restrictions of interest below.

Number of passes. We will say an algorithm is p-pass if the
sequence of queries can be partitioned into at most p contigu-
ous sequences where agent indices are non-decreasing. We
will call it single-pass if it is 1-pass.

Inter-agent adaptivity. An algorithm is inter-agent non-
adaptive if the queries it makes to voter ¢ do not depend
on responses from other voters i’ # 4. In other words, the
choice of queries can be decomposed into n subprocedures
Ay, ..., A, such that A; only makes queries and learns the
responses of voter ¢ (the aggregation given these responses
can be arbitrary). Note that an inter-agent nonadaptive algo-
rithm can always be implemented as a single-pass algorithm
because we can run these procedures sequentially (first Aq,
then A,, and so on).

Intra-agent adaptivity. An algorithm is intra-agent non-
adaptive if the queries asked to voter ¢ do not depend on re-
sponses to previous queries to that agent.

Full nonadaptivity. If an algorithm is inter- and intra-agent
nonadaptive, we will call it fully nonadaptive. Such an al-
gorithm can be implemented such that all queries are fixed
upfront without depending on any of the responses.

3 t-Query Algorithms

We begin by considering optimal distortion bounds for ¢-
query algorithms. First, we establish a lower bound for
any algorithm. Then, we present an algorithm that not only
matches this lower bound but is also single-pass.

3.1 Lower Bound

We start by establishing a lower bound on distortion when
each agent can answer up to ¢ queries without any other re-
strictions on the algorithm.
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(a) Metric for the case where the algorithm does not return a.

(b) Metric for the case where the algorithm returns a.

Figure 1: Metrics constructed for the proof of Theorem 1.

Theorem 1. All t-query algorithms incur a distortion of at
least Q(m/t).

In fact, we show an even stronger result. This holds for any
algorithm that makes at most tn queries in total regardless of
how they are distributed among the agents. Any algorithm
making ¢ queries per voter trivially makes at most tn queries.

Proof. Let R = {Cll iy by, as i ba, .. } with |R| <
tn be an arbitrary sequence of responses the algorithm has
queried and learned, and let ¢ be the candidate returned given
these responses. Since there are at most 2|R| < 2tn candi-
date appearances in | R|, there exists a candidate a € C' that
appears in less than 2¢tn/m many queries. Let S C V be
the set of voters that were ever queried on a. We have that
|S] < 2tn/m.

We do a case analysis based on ¢ = a or ¢ # a. The metrics
are constructed in Figure 1, where the distance function is de-
fined by the path length. First, we show that there are profiles
for both metrics that are consistent with the responses in R. In
both metrics, voters in S are equidistant from all candidates,
and voters in V'\ .S are equidistant from all candidates except
a. We construct the profile as follows. We choose rankings
for voters in .S in an arbitrary way consistent with R. For the
voters in V' \ S, depending on the case, we either place a at
the top or bottom of their ranking and complete the rest of the
ranking arbitrarily in a way consistent with R. Since no voter
in V'\ S was queried on «, this is always possible, and by the
equal distances, these profiles are consistent with the metrics.

Case ¢ = a. Consider the metric in Figure la. Note that
cost(a) = 2(|V| — |S]) + |S| = 2n — |S]. For any candidate
¢ € C\ {a}, cost(c') = |S|. Therefore,

. costic) 2n—|S| _ m
> = > — —1.
dist(c) 2 cost(c’) S| — ¢t

Case ¢ # a. Consider the metric in Figure 1b. Note that
cost(a) = |S| and, for ¢ # a, cost(c) = |S| + 2(|V| — |S]).
As in the previous case, we get a lower bound of m/t—1. [

3.2 A Matching Upper Bound

Next, we consider designing algorithms to match this lower
bound. Recall that using O(m logm) queries, it is possible
to learn an agent’s entire ranking. Hence, if ¢ is sufficiently
large (2(mlogm)), we can simply learn all of the agents’
complete rankings and then run any constant-distortion rule

Algorithm 1 Single-Pass Plurality Veto

Initialize plu(c) =0
for each voter ¢ among the first [1V/2] voters do
Ci < tOp(Uiv Cactive)
plu(c;) + plu(e;) +1
for each voter ¢ among the next [IVI/2] — 1 voters do
Clactive < {c € C | plu(e) > 1}
c; + bottom(o;, Cactive)
plu(c) < plu(c)) — 1
return the unique candidate a with plu(c) > 1.

e A

Algorithm 2 ¢-Query Single-Pass Adaptive

I: R« [(m=D/t]; Chactive + C

2: for eachround r = 1to R do

3: Cr + min{t + 1, |Cactive| } candidates from Cyctive
V, < the next |7/R| voters
¢t « Algorithm 1(C < C,., V < V)
Cac ive < Cac ive Cr Uc

return Ehe unicgue ctandi\date)a 6{ é’jctive

A A

such as Copeland [Anshelevich et al., 2015] or Plurality
Veto [Kizilkaya and Kempe, 2022].

In fact, Plurality Veto can be implemented using O(m)
queries. As this will be useful to our later analysis, we de-
scribe the rule and query implementation in more detail. Plu-
rality Veto runs in two phases. In the first, it determines the
plurality score of each candidate, i.e., the number of voters
that ranks that candidate first. The second begins with each
candidate having a number of points equal to their plurality
score. It sequentially goes through the voters (in an arbitrary
order), and for each, asks the voter their least favorite candi-
date who still has a nonzero number of points; it then decre-
ments that candidate by one point. The winning candidate is
the last one remaining when the final voter is asked to decre-
ment.*

Note that both determining a favorite or least favorite can-
didate among a set S requires |.S|—1 pairwise queries. Hence,
this can be implemented by asking each voter at most 2m — 2
pairwise queries. Therefore, when ¢t > 2m — 2, Plurality Veto
has optimal distortion.

However, there are still two drawbacks to this result. First,
even though Plurality Veto requires only O(m) queries, it
needs to do this in two phases. Hence, its naive implementa-
tion requires two passes. We may wonder if the same can be
done with a single-pass algorithm. Second, and more impor-
tant, this gives us no insight in how to handle t < 2m — 2,
a crucial case for many applications. Our next result handles
both of these matters, devising a single-pass algorithm that
yields asymptotically optimal distortion for all ¢.

Theorem 2. For n > m/t and t € [m — 1], Algorithm 2
is a single-pass, t-query algorithm achieving a distortion of

O(m/t).

“Note that the total number of points given out is n, and each
voter decreases by one. Hence, when the final voter is asked, exactly
one candidate will remain with a single point.



The proof of the theorem appears later in this section. To
better illustrate the ideas, we first present Algorithm 1 for the
special case of t = m — 1. This is essentially a variant of Plu-
rality Veto, which runs in a single pass. Next, by building on
these ideas and using Algorithm 1 as a subroutine, we solve
the problem for all ¢ € [m)].

Warm-up Case: t = m — 1
Algorithm Description. Algorithm 1 uses two series of adap-
tive queries:

* top(oy, C"): A series of adaptive queries that finds the
most preferred candidate of voter ¢ among a subset of
candidates C’ C C. This can be done using |C’| — 1
queries (compare the first two candidates, then compare
the preferred one with the third candidate, and so on).

* bottom(c;, C') : Similar to above but for the least pre-
ferred alternative of voter ¢ among C’ C C.

Algorithm 1 accumulates plurality scores of the first [IV1/2]
voters in plu(c) (lines 2-4). Then, for each of the second
[IVI/2] — 1 voters, among the remaining candidates with pos-
itive plurality score Ciyctive, the voter indicates her least pre-
ferred candidate ¢ by decreasing the candidate’s plurality
score by one (lines 5-8). Since the number of increments is
exactly one more than the number of decrements, only one
candidate remains with a positive score, which subsequently
is returned.

Distortion Analysis. To prove the distortion bound, we
need the following technical definition and lemmas.

Definition 1 ((a, b)-path). Fix two candidates a,b € C. A se-
quence of distinct voters vy, . . . , vy, is called a voter path from
a to b (or an (a,b)-path for short) if there exists a sequence
of k + 1 not necessarily distinct candidates beginning with a
and ending with b, a = cg,c1,...,Ck_1,Cr = b such that,
for each j € [k|, cj_1 =i, c;. Slightly abusing notation, we
will refer to a set of voters V! C V as an (a,b)-path if some
order of V' is an (a, b)-path. We will say two (a, b)-paths are
disjoint if they do not share any voters.

The following is essential to the distortion analysis of Al-
gorithms 1 and 2. The proof appears in Appendix A.
Lemma 1. Fix a,b € C. Suppose there exist £ disjoint (a,b)-

paths. Then, ‘sz(((;; < 27” + 1.

The definition of (a, b)-paths and the result of Lemma 1 are
similar to the definition of chains of preferences and Corol-
lary 5.3 of Kempe [2020a]. The key difference is that we re-
quire the voters along each path to be distinct, which allows
us to prove stronger properties.

Next, using Lemma 1, we show that there are [n/2] dis-
joint voter paths from the candidate returned by Algorithm 1
to each other candidate.

Lemma 2. There exist [|\V|/2] disjoint voter paths from the
candidate selected by Algorithm 1 to any other candidate.

Proof. Let a be the candidate returned by Algorithm 1 and
b € C'\{a} be an arbitrary candidate. Let V; be the first [7/2]
voters initializing the plurality scores and V5 be the second
set of voters decreasing the scores. Note that |[V;]| — 1 = |V3].

Create a one-to-one function g : Vo — Vj as follows. As per
the algorithm, for ¢ € V7, ¢; is the most favorite candidate for
i; and, for i € V3, ¢, is the candidate indicated by ¢ as her
least favorite among the still active candidates (line 7). Map
i to a corresponding voter g(4) increasing the plurality score
of ¢;. This way, g is injective and ¢} = cy(;).

Next, we show there exist [7/2] disjoint voter paths from
atob. Forall i € V5, either ¢, = a or a >; ¢}. This holds
because, since a remains active until the end, both @ and ¢
had positive score, and 4 indicates ¢, as her least preferred
alternative among the active set. The following constitutes
[7/2] voter paths from a to b.

o If ¢} = b, then @ >; b and there is voter path from a to b
on {i}.

o If ¢; # b, we have a >=; ¢ and ¢ = cg(;) =q() -
The latter holds because cg(;y is g(i)’s most preferred
alternative. Therefore, there is a voter path from a to b
on {7, (i)}.

* Lastly, take the single voter i* € V1 \ {g(¢') | i' € Va}
who does not appear in the range of f. Her top vote must
have been a as a is the only candidate with positive score
in the end. Thus, a ;- b and there is a voter path from
atobon {i*}.

The above constructs |Va| 4 |[{i*}| = [IVI/2] disjoint voter
paths from a to b. O

As an aside, note that if we directly apply Lemma 1 to
Lemma 2, this shows that Algorithm 1 achieves distortion 5.

General Case: t € [m — 1]

Now, we build on Algorithm 1 and design a single-pass
t-query algorithm that achieves an optimal distortion of
O(m/t).

Algorithm Description. Algorithm 2 runs in R = [(m —
1)/t] rounds. In each round r € [R], it takes up to ¢ + 1
candidates from the active candidate set Cyciive, denoted C,..
It then runs Algorithm 1 with a new set of |n/R]| voters,
denoted V., along with the candidates in C,., which return
a candidate ¢} € C,. Then, Algorithm 2 removes all can-
didates in C. from the active candidate set Cyctive €Xcept
for ¢}. Because of this removal procedure, in each of the
first R — 1 rounds, it eliminates ¢ candidates from the active
set. In the final round, there are at most m — (R — 1)t <
14 Rt — (R— 1)t < t+ 1 candidates remaining, from which
a single winning candidate is kept in the active set and subse-
quently returned.

Distortion Analysis. To utilize Lemma 1 similar to that in
Lemma 2, we find a sufficient number of disjoint voter paths
from the candidate returned by Algorithm 2 to each of the
other candidates.

Proof of Theorem 2. Let a be the candidate returned by Al-
gorithm 2 and b € C'\ {a} be an arbitrary candidate.
Consider a directed graph G over candidates described as
follows. At each round r, draw a directed edge from the
winning candidate ¢} to all candidates C, \ {c}}. Note that
each candidate ¢ # a has exactly one incoming edge, i.e.,
if ¢ is eliminated at round r, the directed edge ¢ — ¢



is in G. Thus, G forms a directed rooted tree at a. Let
a =cy — ... > c; = b be the unique directed path in
G from a to b. For all j € [k], the edge ¢;_1 — c¢; is created
in a different round ;. By Lemma 2, there are ¢ := [L"/z]/2]
voter paths from c¢;_; to ¢; on a disjoint set of voters V..
Note that V,..’s are disjoint as the algorithm selects a new set
of voters at each round. Thus, we can extend the ¢ paths from
¢o to ¢1 with the ¢ paths from ¢; to ¢ by arbitrarily matching
those two sets of paths and get ¢ disjoint paths from ¢ to cs.
Then, we extend the paths from ¢y = a to c3 and so on to
¢y = b. Therefore, by Lemma 1 and that this holds for all
b e C\ {c} we have

t 2 2
dist(a) < max cost(a) n o
beC cost(b)

4 1
< +1:8[m WH,

~ n/2Rr t
where in the last inequality we used n > R = [WT_W and
that [z] > Z forz > 1. O

4 Algorithms with Adaptivity Constraints

We now turn to varying restrictions on algorithm adaptivity.
We begin with a tight analysis of the fully nonadaptive set-
ting (Section 4.1). Then, we relax the constraints by requir-
ing only one of inter- and intra-agent nonadaptivity at a time
(Sections 4.2 and 4.3).

Note that when algorithms are intra-agent nonadaptive
(Sections 4.1 and 4.3), we can no longer learn each agent’s
full ranking with O(m logm) queries. To do so, we instead
have to ask about all (")) = ©(m?) possible pairwise com-
parisons. Hence, even for t = w(mlogm), we may not be
able to achieve constant distortion. Furthermore, recall that
any inter-agent nonadaptive algorithms can trivially be im-
plemented to be single-pass.

4.1 Fully Nonadaptive Algorithms

We show that the optimal distortion value for ¢-query fully
nonadaptive algorithms is ©(m?/t). This is a factor of m
worse than the unrestricted setting.

Theorem 3. All fully nonadaptive t-query algorithms incur a
distortion of at least Q(m?/t). Furthermore, forn > (%) /t
and t < (ZL) there exists a fully nonadaptive t-query algo-
rithm matching this bound with a distortion of O(m?/t).

We defer the ©(m?/t) lower bound to Appendix B. Below,
we outline the algorithm and then analyze its distortion.

Algorithm Description. There are (7;) pairs of candidates.
The algorithm distributes queries among voters as equally is
possible in a way that each pair of candidates (c,¢’) € (§) is
given to at least |n¢/ (") | voters. This can be done in various
ways. For instance, concatenate [nt/("y)] copies of the list
of all (T;) pairs and assign the ith voter the pairs in range
[(# —1)t+1, (i 4+ 1)t]. Such a distribution can be determined
beforehand and, thus, is fully nonadaptive.

The algorithm aggregates the results as follows. For each
pair ¢, ¢’ € C, draw a directed edge from c to ¢’ if a majority
of voters queried on {c, ¢'} preferred ¢ to ¢ (in the case of a

tie, pick an arbitrary direction). Note that this is now a four-
nament graph, where between every two nodes, there is one
directed edge. Finally, from this graph, select a king vertex a.
A vertex is a king if it reaches all other vertices by at most two
edges. In other words, a is a king if for all other candidates
b € C\ {a}, either a has an edge to b or there exists another
candidate c such that a has an edge to c and c has an edge to b.
It is well-known that king vertices exist in tournament graphs
(e.g., West [2001]).

Distortion Analysis. To prove Theorem 3, we utilize the
following lemma derived in Kempe [2020a] (a special case of
Corollary 5.3).

Lemma 3 ([Kempe, 2020a]). If at least £ voters prefer a to
b, then izzigzg < 27" — 1. Furthermore, if there is a candidate
¢ € C\ {a,b} such that f voters prefer a to ¢, and also f

voters prefer b to c, then ‘CZ;EZ)) < 27" + 1.

Proof of Theorem 3. Let a be the king vertex in the pairwise-
majority graph described above. Fix a candidate b € C \
{a}. Since a is a king vertex, there is a path of length at
most 2 from a to b. Each edge indicates the existence of
[4[nt/(")]] voters preferring the candidate on the tail of
the edge to the candidate on the head. By Lemma 3 and that
n > (’;), we have dist(a) < 4m?/t. O

4.2 Inter-Agent Nonadaptive Algorithms

Moving away from the most restricted case of full nonadap-
tivity, we find that by allowing intra-agent adaptivity, we can
design algorithms that achieve better distortion by a factor of
roughly O(t) (up to logarithmic factors). Only proof sketches
are given. The complete proofs of Theorems 4 and 5 can be
found in Appendices C and D, respectively. Our upper bound
builds on the ideas from the fully nonadaptive setting.

Theorem 4. For n > m? log2 /t2, there exists an inter-
agent nonadpative t-query algorithm achieving a distortion

of O(m?log? t/12).

Proof Sketch. The key idea of the algorithm from the fully
nonadaptive case was to have a sufficient number of pairwise
comparisons between all pairs. Exploiting intra-agent adap-
tivity, for each voter, we can sort ¢ candidates based on her
preferences using O({log ¢) queries. From a sorted list of ¢
candidates, we can infer (é) pairwise comparisons — can-
didates appearing earlier are preferred to the ones appearing
later. This is significantly stronger than the one learned com-
parison per query in the fully nonadaptive setting. Using this
observation, we query voters to sort different sets of ¢ candi-
dates. Similar to Theorem 3, we select a king vertex from the
majority pairwise comparison graph. O

We complement the above theorem by showing its opti-
mality up to logarithmic factors with a surprisingly-intricate
lower bound.

Theorem 5. All inter-agent nonadaptive algorithms have
distortion Q(m? /t?).



Proof Sketch. Recall query choices of an intra-agent non-
adaptive algorithm A can be decomposed into n subroutines
Ay, ..., A,, one for each agent, that chooses the next query
based on previous responses of that agent. The proof incor-
porates ideas from showing lower bounds on comparison-
based sorting algorithms, namely, representing these algo-
rithms as binary decision trees. Each node corresponds to
a query, and the two branches correspond to the two possi-
ble responses. With this representation, we are able to show
that, for many pairs of candidates {a, b}, each algorithm A;
will find two rankings of the form ! = @ = b = --- and
o2=bs=a> - indistinguishable, i.e., they will both be
asked the same queries and receive the same responses.
From this, we can find a single pair {a,b} such that this
property holds for a large fraction of the agents. The algo-
rithm will be unable to distinguish the case of a large fraction
of agents having a as their first choice and b as their second
vs b as their first choice and a as their second. Since it must
make the same choice in these two instances, one of these
must be suboptimal. The final piece is to construct a simple
metric in which choosing the “wrong” candidate on one of
these profiles leads to large distortion. O

4.3 Intra-Agent Nonadaptive Algorithms

We now turn to designing t-query algorithms that are intra-
agent nonadaptive, i.e., each voter is asked up to ¢ pairwise
comparison queries all at once and returns her answers to all
the ¢ queries together. Its distortion guarantee is as follows.

Theorem 6. For n > m/t + [logyt| and t € [m — 1], Al-
gorithm 3 is a single-pass, intra-agent nonadaptive, t-query
algorithm that achieves a distortion of O(m/t + logm).

Algorithm Description. Algorithm 3 runs in R rounds (for
R that will be determined later) querying an equal number
of |?/Rr| new voters in each. For round r € [R], the cor-
responding group of voters are queried on ¢, disjoint pairs
of candidates, arbitrarily selected from the active candidate
set Cactive. For each of the /,. pairs, the candidate losing the
majority of the |?/R| votes is eliminated from Cictive. This
process goes on until one candidate remains, which is subse-
quently returned.

Since we want at most ¢ queries made to each voter, in each
round, we can ask about at most ¢ pairs (i.e., £, < t). While
|Cactive| = 2t, there are enough candidates such that the algo-
rithm can, in fact, make all ¢ queries (i.e., £, = t). However,
after |[/t| — 1 rounds, fewer than 2¢ candidates will remain.
Then, the algorithm pairs up as many candidates as possible
in Cyctive (one candidate will be unpaired when |Cactive| 18
odd), and ¢, = |[ICactivel/2]| candidates are eliminated. This
can go on for at most [log, 2¢] < [log, t] 4+ 1 many rounds
until a single candidate remains. Hence, there will be at most
|m/¢| + [log, t] rounds.

To prove the distortion bound, we again utilize Lemma 1
by finding a sufficient number of disjoint voter paths from the
chosen candidate to the other candidates. The proof can be
found in Appendix E.

While the lower bound of Theorem 1 shows the optimal-
ity of the above result for t = O(m/logm), it is unclear
what the best achievable distortion is for ¢ = w(m/logm).

Algorithm 3 ¢-Query Single-Pass Intra-agent Nonadaptive

R+ |m/t] + [logy t]; Cactive — C
for each round 7 = 1 to R do
£, < min{t, | [Cactivel/2 |}
Let Cr <~ {(ar,la bT‘,l)v (ar,2; br,2)7 B (ar,&a br,fr)}
be £, pairs of distinct candidates from Clcive
for each voter ¢ among the next |»/r| voters do
Present the ¢, pairs (a,.1,br1), ..., (@re,, bre,)
for each pair in {(a;,b;) | j € [¢(,]} do
Let ¢, ; be the candidate losing the majority of
comparisons (ties broken arbitrarily)

9: Cactivg — Cactiye \ {Cr,j}
return the unique candidate a € Cicive

o=

® R 9

Theorem 6 continues to give a O(logm) upper bound, but
the lower bound becomes O(m/t), and only constant once
t = Q(m). Fort = Q(m?), we know it is possible to achieve
O(1) distortion because, at this point, it is possible to learn
all agents’ complete rankings and run any of the well-known
constant-distortion rules. However, we leave it as an interest-
ing open question to close this gap for intermediate values of
t, or find the minimum ¢ with constant distortion.

5 Discussion

To summarize, we have studied the design of a limited num-
ber of pairwise queries to optimize metric distortion. We con-
sidered a variety of constraints on our algorithms regarding
both the rounds of interactions and the dependency of queries
on previous answers. In all cases, we provide either tight or
nearly tight upper and lower bounds. In the case of inter- and
intra-agent nonadaptivety, there remain logarithmic gaps.

As for follow-up work, the most direct would be to close
these gaps. However, more broadly, while requiring few
rounds of interaction and both inter- and intra-agent nonadap-
tivity capture an interesting set of constraints on the algo-
rithms, there are a plethora of reasonable notions one could
consider. For example, we may wish for the algorithm to
be anonymous, demanding that each agent’s queries depend
only on their ranking, o;, rather than their identity. An even
stricter property is to require that all agents receive the ex-
act same queries, ensuring a strong notion of equality in how
different agents interact with the system. We leave optimiz-
ing distortion in these settings and the development of new
desirable properties as intriguing directions for future work.

Lastly, in certain applications, there can be such an enor-
mous number of alternatives that our bounds become com-
pletely impractical. For instance, in variations of Polis, the
domain of alternatives can be extended beyond just submit-
ted comments to any statement from a natural language, a
seemingly limitless domain. In such cases, when it is impos-
sible to ensure that each candidate is queried by at least one
voter, achieving bounded distortion is hopeless. We need to
either (i) make additional assumptions about the domain of
alternatives (say, they arise from a low-dimensional feature
space), (ii) consider queries that are more powerful than pair-
wise comparisons, or (iii) use other measures of efficiency.
We again leave these as exciting directions for further work.
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Appendix

A Proof of Lemma 1

Fix a,b € C. We first show a useful property about (a, b)-paths. Namely, if V' is an (a, b)-path, then,

d(a,b) <2-) . d(i,b)

Indeed, let k& := |V’|, 41,...,4x be the order of agents in V', and a = ¢y,...,c; = bbe be the corresponding candidate
sequence. The inequality follows from the following:

k
d(a,b) = d(co, cx) + Y _ (d(cs, cx) — dlc, cx))
j=1

|
-Mw

(d(cj—1,cr) —d(cj, cx)) + d(ek, cx)

j=1
E
= (dl¢j-1,cx) — d(cj, cx)) (d(ck,cr) = 0)
j=1
k
< Z (d(cj—1,15) +d(ij, c,) — d(cj, c)) (Triangle inequality)
j=1
k
<Y (dlejyig) + d(iy, ex) — d(cj, cx)) (¢j—1 >i; ¢)
j=1
k
< Z (d(ij, cr) + d(ij, cx)) (Triangle inequality)
j=1
k
=2 d(i;,b).
j=1
With this, we are ready to prove the lemma. Let V7, ..., V} be the disjoint voter sets of the ¢ (a, b)-paths. By the disjointness

of V;’s we have

Z C
cost(b) > Z Z d(i, b) > Z d(C;a b) 7. d(c;, b)’
Jj=1lieV; i

Jj=

—

where the second inequality follows from the derivation above. Using the triangle inequality, we have cost(a) < >,y d(i, b)+
d(a,b) = cost(b) + n - d(a,b). Hence,

cost(a) _ cost(b) +n - d(a,b) d(a,b) d(a,b) 2n
cost(b) — cost(b) e cost(b) — e £-d(a, b)/2 1 +

B Proof of Theorem 3 (Lower Bound)

Fix a set of queries () with |@| = nt. Note that any nonadaptive queries must have a pair of candidates a, b that were queried
together at most nt/ (Tg) times. Suppose that in response, whenever a is queried, it is preferred to all other candidates, and
whenever b with ¢ # aq, it is preferred to c. Note that if the algorithm picks a candidate other than a, then the distortion is
unbounded as this is consistent with all voters being distance 0 from a and distance 1 from all other candidates. Let S be the set
of voters querled on both a and b. If a is chosen, then the metric space could be the one in Figure 1a, which results in distortion

21 = Q(m? /). O



C Proof of Theorem 4

Take £ = max{{ | (2¢) log,(2¢) < t}, so that we can sort a group of 2¢ candidates using up to ¢ queries. Partition the candidate
set into [m/£] groups of size < ¢ denoted by C = {C1,...,Cry, 01} Divide the voters as equally as possible among pairs
(Cj,,Cy,) € (5). ie., each pair of candidate groups is assigned at least [n/($)] voters. The voters assigned to (C},, Cj,) will
be queried to learn their full preference ranking over C;, U C},. This way, all pairs of candidates ¢, ¢ € C' are compared by at
least [/ (1) | voters.

Similar to the algorithm for Theorem 3, we create the majority pairwise comparison graph and select a king node of this

complete directed graph. Each edge of this graph indicates % “n/ (‘gl)J voters preferring one candidate to another. Thus, by
Lemma 3, the king vertex of this graph achieves a distortion of at most

élflj?'g)JJrlSE;(lg) +1§8<%>2+1
<0 <m2 maxgothJ}) .

D Proof of Theorem 5

Fix an inter-agent nonadaptive, t-query algorithm .4. Without loss of generality, suppose that .4 always makes exactly ¢ queries
to each agent (if it does not, we can add arbitrary queries at the end and ignore the responses). Since the queries made by the
algorithm to agent ¢ can only depend on responses from i, we can decompose the query-making portion of A into n subroutines,
Ay, ... A,. The subroutine A; decides which pair of candidates to query agent ¢ on next, given their previous responses. We can
represent each A; as a binary decision tree with height ¢ 4+ 1. Each internal node is labelled by a pair of candidates. Depending
on the response of which candidate is preferred, either the left or right branch is followed.’> Note that sometimes only one of
the two branches can be induced by a ranking, e.g., if a certain response would lead to a cycle in the preferences. In such cases,
a node has only one child.

Each ranking o that agent i could have corresponds to a path in this tree from the root to a leaf, where, at each internal node,
the branch is taken based on the comparison query response according to o. Note that if two rankings o and ¢’ follow the same
path down the tree, they are indistinguishable according to A;, i.e., they lead to the exact same queries asked and responses
received.

We will say a pair of candidates {a,b} C C deceive A; if there are two rankings o and o’ such that o(1) = ¢/(2) = a,
0(2) = ¢'(1) = b, and o and ¢’ follow the same path in A4;. In other words, there is a run of the algorithm A; such that it is
plausible that a is ranked first and b is second or that b is first and a is second, and these two scenarios are indistinguishable.
The property that {a,b} C C deceive A; is equivalent to there exists a path in A; such that neither a nor b lose in a pairwise
comparison. Indeed, taking any ranking corresponding to this path and then moving a to the top and b second or a second and
b to the top will lead to the exact same responses and correspond to the same path.

Let D; = {{a,b} | {a,b} deceive A;} be the set of pairs that deceive A; and let E; = D, be its complement, i.e., the
remaining pairs that do not deceive A;. We will show that |E;| < t2, that is, there are at most ¢2 pairs that do not deceive A;.

Consider an arbitrary path down the decision tree in A;. Let T be the set of candidates that lost a pairwise comparison at least
once on this path. Since the path is of length ¢ and each node results in one candidate losing, |T'| < ¢. By the above definition,
if {a,b} € E;, we have that {a,b} N T # (. In other words, every pair in F; must contain at least one member of T". Indeed,
if {a,b} N'T = (), then this is a path in which neither lost a nor b lost. Let B¢ = {b | {a*,b} € E;} be the set of candidates
who are paired with a* in E;. The above implies that |E;| < > . . [ES

Fix some a* € T. We next show that |[E?" | < t. Combined with the above argument, this implies that |E;| < |T'| -t < 2,
as needed. Let o be an arbitrary ranking with o(a*) = 1, and consider the path induced by o. Let T be the set of candidates
who lose at least once on this path. We have that a* ¢ T*" because a* is ranked first in . Furthermore, note that if b € Ef*,
thenb € T . Indeed, if not, the above path would have neither a* nor b losing, contradicting that {a*,b} € F;. This means
that Ef* C T*". Finally, notice that |T"'* | <t because the path is of length ¢. This implies the desired bound.

Since |E;| < 2, and | D;| + | E;| = (53), this implies that | D;| > (") — ¢. By an averaging argument, there must be a pair

m 2

{a, b} that deceives at least (2(,,: n=(1- #2—1)) - n of the algorithms A;.

2
Fix such a set {a,b}. Let V' = {i | {a,b} € D;} be the set of agents whose algorithms are deceived. By the above, we
have that [V’/| > (1 — %) -n. Foreachi € V', let 0¢® and o%® be a pair of ranings indistinguishable to A; such that
o2 (1) = 0%%(2) = a and 0°(2) = o?%(1) = b.

7

>This is very similar to representations of comparison-based sorting algorithms used to prove lower bounds on query complexity.



We can now construct a pair of profiles o and @ where, in the first, each i € V' has ranking agb, and in the second, each
i € V' has ranking 0% The remaining voters V' \ V’ will have arbitrary rankings (but the same in both profiles). Note that o
and o lead to the exact same queries and responses. Hence, the chosen candidate must be the same on both. Therefore, for at
least one of a and b was not chosen to be winner. Without loss of generality, suppose it was a.

We will consider the profile % along with the following metric. Each i € V' has d(i,a) = 0. For all remaining pairs of
voters and candidates (7', c¢), we will have d(i’, ¢) = 1. Note that these distances are consistent with o®®. Furthermore, the cost

. 2 . . . . . . . .
for a is at most |V \ V| < % - n, while the cost for any other candidate is n. Therefore, the distortion on this instance is
at least )

n m
72t2 n = Q ( tT ) . D
m(m—1)

E Proof of Theorem 6

Let a be the candidate returned by Algorithm 3 and b € C'\ {a} be an arbitrary candidate. Create the elimination directed graph
G as follows. For each candidate ¢ # a, there is a candidate g(c) that won over ¢ in a pairwise majority comparison by |7/R]
voters; draw a directed edge from g(c) to c. Since each candidate has a single incoming edge, G forms a directed tree rooted at
a.

There is a unique path from a = ¢y — ¢;1 ... — ¢ = b. Forall j € [k], let V; be the set of voters V; who made the (¢;_1, ¢;)
comparison resulting in elimination of c¢;. The sets V}’s are disjoint since c¢;_; must be eliminated after c; is eliminated (in an
earlier round). Let V' C Vj be the voters preferring c; 1 to ¢;. For each i € V/, there is a voter path from ¢;_; to ¢; on {i}.
Hence, there are |V/| > [L"/#]/2] many disjoint voter paths from ¢;_; to ¢;. We can connect the voter paths from ¢ to ¢; and
c1 to co by arbitrarily matching and extending them to voter paths cg to co. We can continue to make voter paths from ¢y = a
to ¢, = b. All of these paths consist of unique sets of voters. By Lemma 1 and that the above holds for all b € C', we have

cost(a) m dn
1<——+1=8R+1=0(m/t+logt
beC cost(b) — [Lv/r]/2] +is 2] + + (m/t +logt),

where the last inequality holds by n > R = |™/t| + [log, t] and |z] > =/2 for z > 1. O

dist(a) =
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